Устройство охлаждения лазера

 

Изобретение относится к твердотельным оптическим квантовым генераторам, в частности к системам их охлаждения, и может быть использовано при изготовлении лазерной техники. Изобретение позволяет уменьшить массово-габаритные показатели устройства и улучшить его технико-эксплуатационные показатели за счет обеспечения стабильности работы. Устройство охлаждения лазера состоит из размещенных с одного торца корпуса квантрона патрубков подачи и отвода хладагента, связанных с теплообменником и насосом, на внутренней поверхности торцов корпуса установлены уплотнительные элементы с отверстиями, разделяющие полость охлаждения на камеру подачи хладагента, образованную внутренней поверхностью отражателя, и камеру отвода хладагента, образованную стенкой корпуса квантрона и наружной поверхностью отражателя. 2 ил.

Изобретение относится к приборам квантовой электроники, а именно к системам охлаждения твердотельных оптических квантовых генераторов, и может быть использовано при изготовлении лазерной техники.

Известно устройство для охлаждения квантрона (осветителя) (в настоящее время более распостранен термин "квантрон", см. Приборы квантовой электроники./Под ред. Стельмаха М. С. М. Радио и связь, 1985, с. 46), остоящее из размещенных в корпусе квантрона патрубков подачи и отвода охлаждающего агента, в качестве которого используют воду, при этом патрубок отвода воды соединен с теплообменником с внешним контуром охлаждения, а патрубок ее подачи соединен с насосом, патрубки размещены с противоположных торцов корпуса квантрона [1, 2] Известна также комбинированная система охлаждения для лазерных установок, состоящая из полости охлаждения лазера и неавтономной и автономной систем охлаждения, связанных между собой [3] В известных устройствах охлаждение активного элемента, лампы накачки и отражателя реализуется однонаправленным потоком охлаждающего агента, что не исключает застойных явлений в квантроне. Кроме того, размещение патрубков подачи и отвода охлаждающего агента с противоположных торцов корпуса значительно удлиняет корпус лазера, т.е. увеличивает его массово- габаритные показатели.

Наиболее близким к предлагаемому является устройство охлаждения лазера, содержащее размещенное в корпусе квантрона устройство подачи и отвода охлаждающего агента, в качестве которого используют воду, при этом устройство подачи и отвода воды представляет собой трубки с отверстиями, проходящие от одного торца корпуса квантрона до противоположного и снабженные с одного конца штуцерами, а с другого заглушками, трубка отвода воды соединена с теплообменником, снабженным внешним контуром охлаждения, а трубка ее подачи соединена с насосом, при этом вход и выход трубок размещены с одного торца корпуса [4] Известное устройство имеет относительно небольшие массово-габаритные показатели, однако не позволяет добиться стабильности эксплуатационных характеристик лазера за счет образования застойных зон охлаждающего агента и частичного экранирования отражателя, что приводит к снижению КПД квантрона.

Техническая задача изобретения уменьшение массово-габаритных показателей при одновременном улучшении технико-эксплуатационных характеристик квантрона путем обеспечения стабильности работы излучателя за счет обеспечения равномерного охлаждения активного элемента по его поверхности, устранение застойных зон, минимизация скорости потока хладагента.

Поставленная задача решается тем, что предлагаемое устройство охлаждения лазера состоит из размещенных с одного торца корпуса квантрона патрубков подачи и отвода хладагента, связанных с теплообменником и насосом и снабженных уплотнительными элементами, размещенными между торцами корпуса и отражателем, при этом последние снабжены отверстиями, разделяющими полость охлаждения на камеру подачи хладагента, образованную внутренней поверхностью отражателя, и камеру отвода хладагента, образованную стенкой корпуса квантрона и наружной поверхностью отражателя.

Сравнение предлагаемого излучателя с прототипом позволяет выявить следующие отличительные признаки: уплотнительные элементы с отверстиями, размещенные в торцах корпуса квантрона и выполняющие дополнительную функцию - распределение потока хладагента в полости квантрона; Все вышеизложенное позволяет сделать вывод о соответствии заявляемого технического решения критерию "Новизна".

В технике производства охлаждающих систем лазеров известен прием размещения входного и выходного отверстий хладагента на одной стороне корпуса квантрона, что позволяет уменьшить линейные размеры устройства.

Однако известные конструкции обеспечивают однонаправленный поток хладагента в полости квантрона. В предлагаемой конструкции уплотнительные элементы наряду с известной функцией фиксирования заданного положения отражателя выполняют функцию распределения потока хладагента, что позволяет разделить полость охлаждения на две камеры (камеру подачи хладагента, образованную внутренней поверхностью отражателя, и камеру отвода хладагента, образованную внешней поверхностью отражателя и корпусом квантрона), т.е. получить двунаправленный поток хладагента, распределенный по всему объему полости охлаждения, что в значительной степени устраняет застойные явления и повышает стабильность работы лазера. Кроме того, это позволяет уменьшить диаметр квантрона в поперечном сечении и минимизировать скорость потока хладагента, т.е. позволяет уменьшить массово-габаритные показатели лазера в целом.

В доступных источниках информации не обнаружено данных об известности заявляемой совокупности существенных признаков и достигаемого при этом результата, что позволяет сделать вывод о соответствии критерию "Изобретательский уровень".

На фиг. 1 схематично изображен квантрон разрез; на фиг. 2 сечение А-А.

Устройство охлаждения лазера состоит из полости охлаждения, образованной корпусом квантрона 1 с торцами 2 и 3, внутри которого размещены отражатель 4, устройство накачки 5 и активный элемент 6. На торце 3 корпуса 1 установлены патрубок подачи хладагента 7 и патрубок его отвода 8. Уплотнительный элемент 9 размещен между торцом 3 корпуса квантрона 1 и отражателем 4. Уплотнительный элемент 9 перекрывает канал, образованный внешней стенкой отражателя 4 и корпуса 1, и снабжен отверстием 10 для подвода хладагента в полость охлаждения. Уплотнительный элемент 11 размещен между торцом 2 и отражателем 4, при этом элемент 11 снабжен отверстием 12 для отвода хладагента по пристенному каналу 13 через патрубок 8. Патрубки 7, 8 сообщены с теплообменником и насосом, образующими блок охлаждения.

В качестве хладагента используют воду. Корпус квантрона 1 выполнен герметичным. Уплотнительные элементы 9, 11 выполнены из термостойкого пластичного материала, например фторопласта. Отверстия 10, 12 имеют площадь сечения, соразмерную площади сечения патрубка подачи хладагента 7. Отражатель 4 выполнен в виде цилиндра с нанесенным диффузионным покрытием или в виде моноблока. В качестве теплообменника может быть использован воздушный радиатор или любое известное устройство с внешним контуром охлаждения.

Устройство работает следующим образом.

Воду через патрубок 7 подают в корпус квантрона 1. Проходя через отверстие 10 уплотнительного элемента 9, вода поступает в камеру, образованную внутренней поверхностью отражателя 4 с размещенными в ней активным элементом 6 и устройством накачки 5. Уплотнительный элемент 9 выполнен таким образом, что обеспечивает попадание воды из патрубка 7 внутрь отражателя 4 и последующий выход воды с внешней стороны отражателя 4 в патрубок 8. Проходя через камеру охлаждения в направлении от торца 3 к торцу 2, вода охлаждает активный элемент 6 и устройство накачки 5. Отработанная вода поступает в отверстие 12 уплотнительного элемента И, обеспечивающего беспрепятственный проход воды с внутренней стороны отражателя 4 на его внешнюю сторону. По пристенному каналу 13 в направлении от торца 2 к торцу 3 через патрубок 8 отводится из корпуса квантрона 1 в теплообменник. В теплообменнике воду охлаждают и насосом через патрубок подачи хладагента 7 снова подают в корпус квантрона 1.

Предлагаемая система охлаждения может быть использована в любых твердотельных лазерах с ламповой накачкой и позволяет разделить полость квантрона на 2 охлаждающие камеры внутреннюю и внешнюю. Использование предлагаемой конструкции системы охлаждения лазера позволит уменьшить массово-габаритные показатели, улучшить технико-эксплуатационные показатели квантрона за счет обеспечения стабильности работы излучателя путем обеспечения равномерного охлаждения поверхности активного элемента, что позволяет исключить образование оптических клиньев, практически устранить застойные зоны. Кроме того, использование предлагаемой конструкции позволит облегчить работу по сборке и разборке квантрона.

Источники информации 1. Справочник по лазерной технике. Пер. с немецкого. М. Энергоатомиздат, 1991, 51-74.

2. Лазер ЛТИ-410. Техническое описание и инструкция по эксплуатации 3.970.204 ТО.1987.

3. Патент РФ N 4 2019015, кл. H О1 S 3/04, 1994.

4. Каталог унифицированных механических узлов "Комплект М". Минск: Красная звезда, МППО им. Я.Коласа, с. 29-32.

Формула изобретения

Устройство охлаждения лазера, состоящее из размещенных с одного торца корпуса квантрона патрубков подачи и отвода хладагента, связанных с теплообменником и насосом, и снабженное уплотнительными элементами, размещенными между торцами корпуса и отражателем, отличающееся тем, что уплотнительные элементы снабжены отверстиями, разделяющими полость охлаждения на камеру подачи хладагента, образованную внутренней поверхностью отражателя, и камеру отвода хладагента, образованную стенкой корпуса квантрона и наружной поверхностью отражателя.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к лазерной технике, а именно к импульсно-периодическим твердотельным лазерам

Изобретение относится к конструкции оптической накачки для оптического квантового генератора, которая содержит активную среду в виде цилиндрического стержня (1), имеющего круглое сечение, причем концы стержня введены в два кольца (11), выполненные из теплопроводного материала, по меньшей мере, три пакета (21, 22) небольших стержней диодов накачки, расположенных звездой вокруг стержня, опору (5) с регулировкой температуры посредством модуля (8) на основе эффекта Пельтье, причем кольца (11) находятся в контакте с опорой (5). При этом пакет диодов, так называемый нижний пакет (21), размещен между стержнем (1) и опорой (5) и содержит для каждого другого пакета (22) блок (7) теплопроводности, образующий опору для упомянутого пакета (22), причем блоки (7) установлены на охлажденной опоре (5) и не находятся в контакте ни между собой, ни с кольцами (11). Технический результат заключается в обеспечении возможности повышения эффективности охлаждения при уменьшении габаритов устройства. 5 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к твердотельным лазерам с диодной накачкой, в частности к элементам накачки и системам их охлаждения. Оптическая усилительная головка с диодной накачкой состоит из размещенных в корпусе активного элемента в виде стержня, матриц лазерных диодов, расположенных на держателях вдоль активного элемента, и системы охлаждения, содержащей стеклянную трубку, охватывающую активный элемент с образованием радиального канала δ. На обоих торцах стеклянной трубки установлены демпфирующие элементы. В корпусе, держателях и матрицах лазерных диодов расположены охлаждающие каналы с входным и выходным патрубками, образующие двухконтурную систему охлаждения. Технический результат заключается в повышении выходной энергии лазерного излучения и в достижении стабильности выходных энергетических параметров при частоте повторения импульсов до 100 Гц. 1 з.п. ф-лы, 7 ил.
Изобретение относится к лазерной технике, а конкретнее к жидкостным охлаждающим средам (теплоносителям) (ЖТС) твердотельных лазеров (например, неодимовых или гольмиевых), являющимся одновременно светофильтром для ультрафиолетового (УФ) излучения лампы накачки лазера. Оно может применяться везде, где разрабатываются или применяются твердотельные лазеры, имеющие жидкостную систему охлаждения с фильтрацией УФ-излучения лампы накачки. Сущность изобретения заключается в том, что ЖТС содержит 2-окси-4-(С7-С9-алкил)оксибензофенон, бутиловый спирт и октан при следующем содержании компонентов, мас.%: 2-окси-4-(С7-С9)алкоксибензофенон 0,3-0,6 бутиловый спирт 35-45, октан - остальное. Технический результат заключается в обеспечении возможности увеличения ресурса работы лазера.

Изобретение относится к лазерной технике. Оптическая усилительная головка с контротражателем диодной накачки состоит из размещенных в корпусе активного элемента в виде стержня, элементов диодной накачки, расположенных равномерно вокруг и вдоль активного элемента на держателях, и системы охлаждения, содержащей трубку, охватывающую активный элемент с образованием кольцевого канала шириной δ, каналы в корпусе, каждом держателе и элементах накачки и входной и выходной коллекторы. Каждый держатель содержит отражающую поверхность, обращенную к активному элементу, торцы активного элемента закреплены в прижимах, установленных в корпусе, система охлаждения выполнена в виде единого контура. В качестве элементов диодной накачки используются линейки лазерных диодов, каждая из которых снабжена цилиндрической линзой, а отражающие поверхности держателей расположены вдоль поверхности активного элемента и охватывают его диаметрально. Технический результат заключается в обеспечении возможности снижения гидравлического сопротивления системы охлаждения. 6 ил.

Изобретение относится к лазерной технике. Квантрон твердотельного лазера с термостабилизацией диодной накачки содержит размещенные в корпусе в виде многогранника: активный элемент, матрицы лазерных диодов, расположенные вокруг и вдоль активного элемента равномерно, и систему охлаждения, выполненную в виде двух независимых контуров для охлаждения активного элемента и матриц, контур охлаждения активного элемента содержит трубку, охватывающую активный элемент с образованием кольцевого канала шириной δ, и входной, выходной коллекторы, из которых выходят каналы. Квантрон снабжен световодами, расположенными параллельно оси активного элемента, контур охлаждения матриц содержит термоинтерфейс, теплоотводы и элементы термостабилизации, размещенные в теплообменном модуле и теплообменниках. В качестве элементов термостабилизации используются нагреватели и элементы охлаждения. Технический результат заключается в обеспечении возможности упрощения системы охлаждения активного элемента. 2 ил.

Изобретение относится к лазерной технике. Излучатель твердотельного лазера без жидкостного охлаждения с термостабилизацией диодной накачки содержит активный элемент, установленный в кольцах, термоинтерфейс и блок диодной накачки, состоящий из теплораспределителя с выступами, установленного жестко на посадочной поверхности, термоэлектрического модуля, расположенного между теплораспределителем и посадочной поверхностью, и линеек лазерных диодов, размещенных на выступах теплораспределителя равномерно относительно активного элемента и обращенных к нему излучающей частью. Излучатель снабжен жестко закрепленным на посадочной поверхности резонатором, в корпусе несущей части которого расположен активный элемент. Блок диодной накачки снабжен нагревателем, расположенным в теплораспределителе, и ограничительной рамкой, в которой установлен термоэлектрический модуль с воздушным зазором по периметру. Резонатор и блок диодной накачки не имеют контактов. Технический результат заключается в обеспечении возможности увеличения КПД лазера. 6 ил.

Изобретение относится к лазерной технике. Универсальный излучатель твердотельного лазера с безжидкостным охлаждением содержит резонатор, установленный жестко на основание, устройство накачки и теплообменный блок, содержащий термоэлектрические модули и теплообменники. Устройство накачки выполнено в виде квантрона, жестко закрепленного на основании, теплообменный блок снабжен нагревательным элементом, контурной тепловой трубой с пластиной конденсатора, термоинтерфейсом и термодатчиками, установленными в теплообменниках пластине конденсатора. Конструкция резонатора выполнена деформационно-устойчивой, при этом оптическая схема выполнена на базе неустойчивого резонатора. Технический результат заключается в обеспечении возможности повышения устойчивости конструкции к внешним воздействующим факторам. 4 ил.

Устройство охлаждения активного элемента твердотельного лазера содержит активный элемент, расположенный в оболочке из оптически прозрачного теплопроводного материала, и металлические ламели, контактирующие с внешней стороной оболочки. Между активным элементом и оболочкой размещена оптически прозрачная прослойка, теплопроводность которой меньше теплопроводности оболочки и активного элемента, а в местах контакта оболочки и ламелей размещен термоинтерфейс. Технический результат - повышение качества кондуктивного охлаждения активного элемента с высокой теплопроводностью при боковой накачке. 1 ил.
Наверх