Способ получения 1,1,2,2-тетрафторэтана

 

Изобретение относится к химической промышленности и может быть использовано при получении 1,1,2,2-тетрафторэтана (хладона 134), являющегося перспективным озонобезопасным хладоном. Способ включает каталитическое гидрирование тетрафторэтилена при повышенной температуре, предпочтительно 160-250oC. Процесс проводят в адиабатических условиях. Исходный тетрафторэтилен подают на гидрирование в виде смеси с индифферентным разбавителем, например, хладоном 134, причем молярное отношение хладон 134 - тетрафторэтилен поддерживают в пределах 1 - 6. Молярное отношение водород - тетрафторэтилен поддерживают в пределах 0,9 - 1,2. В качестве катализатора используют палладий, нанесенный на альфа-оксид алюминия (корунд), предпочтительно промышленный катализатор АПК-2. Для розжига катализатора исходную газообразную смесь предварительно нагревают по крайней мере до 50oC. Способ характеризуется высоким выходом целевого продукта (до 99 %) и незначительным образованием нежелательных побочных продуктов 1,1,2-трифторэтана и фтористого водорода, что подтверждено лабораторными опытами. 4 з.п. ф-лы, 1 табл.

Изобретение относится к органической химии, а именно к способам получения 1,1,2,2-тетрафторэтана (хладона 134), являющегося перспективным озонобезопасным хладоном.

Известен способ получения 1,1,2,2-тетрафторэтана совместно с 1,1,2-трифторэтаном путем каталитического гидрирования тетрафторэтилена над восстановленной окисью никеля. Во время реакции температуру поддерживают на уровне 150oС. Общий выход указанных продуктов составляет 75% [1] Существенным недостатком известного способа получения 1,1,2,2-тетрафторэтана является низкий выход целевого продукта и образование 1,1,2-трифторэтана в качестве побочного продукта. Последний не находит практического применения и требует создания установки по его обезвреживанию, так как сброс указанного соединения в окружающую среду экологически недопустим. Вызывает осложнения и поддержание заданной температуры процесса, поскольку реакция гидрирования тетрафторэтилена экзотермична.

Задача, решаемая изобретением, состоит в улучшении экологических параметров и повышении экономичности производства 1,1,2,2-тетрафторэтана за счет уменьшения побочных продуктов гидрирования тетрафторэтилена, а также снижения удельного расхода энергоресурсов.

Поставленная задача решается тем, что в способе получения 1,1,2,2-тетрафторэтана гидрированием тетрафторэтилена в присутствии катализатора при повышенной температуре процесс гидрирования ведут в адиабатических условиях при 160-250oС с использованием в качестве катализатора палладия на альфа-оксиде алюминия, при подаче исходного тетрафторэтилена на гидрирование в виде смеси с индифферентным разбавителем при молярном отношении индифферентного разбавителя и тетрафторэтилена, равном 1-6:1.

Кроме того, в качестве катализатора используют предпочтительно промышленный алюмо-палладиевый катализатор состава, мас. палладий 1,8-2; оксид алюминия остальное.

В качестве индифферентного разбавителя используют предпочтительно 1,1,2,2-тетрафторэтан.

Процесс ведут при молярном отношении водорода и тетрафторэтилена предпочтительно в пределах 0,9-1,2:1.

Процесс ведут с применением предварительного подогрева катализатора путем подачи исходной газообразной смеси, нагретой по крайней мере до 50oС.

Пример 1. Гидрирование тетрафторэтилена проводят на лабораторной установке, в состав которой входят реактор из никеля диаметром 18 и длиной 250 мм, система дозировки тетрафторэтилена, водорода и газообразного разбавителя, а также конденсации продуктов гидрирования. Реактор снабжен гильзой для термопары и изолирующей рубашкой для исключения потерь тепла в окружающую среду. В реактор загружают промышленный алюмо-палладиевый катализатор марки АПК-2 (ТУ 6-03-312-76) состава, мас. палладий 1,8-2; альфа-оксид алюминия - остальное. Катализатор берут в количестве 60 см3. Катализатор предварительно дегидратируют в токе азота при 350oС в течение 5 ч и восстанавливают в токе водорода при 300oС в течение 3 ч. Предварительный подогрев катализатора осуществляют путем подачи исходной газообразной смеси, нагретой в форподогревателе, установленном непосредственно перед реактором. Форподогреватель представляет собой полую никелевую трубку диаметром 10 и длиной 300 мм, снабженную внешним электрообогревом. Температуру в форподогревателе устанавливают в интервале 50-100oС. После установления температуры в реакторе свыше 50oС форподогрев отключают и процесс гидрирования проводят в адиабатических условиях, продолжая подачу исходных реагентов (тетрафторэтилена и водорода) и разбавителя без предварительного подогрева. Продукты гидрирования выводят из реактора, промывают водой для охлаждения и удаления следовых количеств кислых компонентов, сушат дегидратированным хлоридом кальция, конденсируют в баллоне, охлаждаемом жидким воздухом, ректифицируют на лабораторной низкотемпературной колонке эффективностью 40 т.т. Продолжительность опыта 5 ч. Скорость подачи тетрафторэтилена и водорода по 1 л/ч (0,045моль/ч); 1,1,2,2-тетрафторэтана - 6 л/ч (0,268 моль/ч). Температура в реакторе в адиабатических условиях составила 160oС. Всего подано 24 г тетрафторэтилена и 138 г 1,1,2,2-тетрафторэтана. В результате конденсации получено 162 г сырца, из которого путем низкотемпературной ректификации выделено 161 г 1,1,2,2-тетрафторэтана с содержанием основного вещества более 99% 23 г из этого количества синтезировано в ходе данного опыта. Выход целевого продукта от теоретически возможного по органическому сырью 94,0% Примеры 2 9. Опыты по гидрированию тетрафторэтилена проводят на установке, описанной в примере 1, при той же последовательности операций. Примеры 2-5 проведены в оптимальных условиях, примеры 6-9 для обоснования граничных условий оптимального режима. Конкретные условия и результаты опытов по всем примерам представлены в таблице.

Как видно из данных таблицы, осуществление гидрирования в оптимальных условиях (примеры 1-5) характеризуется практически полной конверсией исходного сырья и высоким выходом целевого продукта. Снижение молярного отношения 1,1,2,2-тетрафторэтана к тетрафторэтилену ниже 1 приводит в адиабатических условиях к неконтролируемому росту температуры, что в свою очередь сопровождается образованием наряду с целевым продуктом побочных, в частности трифторэтилена и 1,1,2-трифторэтана (пример 6). Увеличение указанного отношения свыше 6 нецелесообразно ввиду недостаточно высокой скорости процесса гидрирования (пример 7). Снижение молярного отношения водорода к тетрафторэтилену ниже 0,9, равно как и увеличение свыше 1,2, ведет к неполной конверсии исходных реагентов, что в свою очередь приводит к повышенному расходу реагентов и в результате к снижению выхода целевого продукта (примеры 8 и 9).

Представленные примеры доказывают эффективность предлагаемого способа по сравнению с известным. Полученный эффект можно объяснить следующим образом. Экзотермическое гидрирование тетрафторэтилена по прототипу сопровождается местными перегревами, поскольку тепловой эффект гидрирования тетрафторэтилена чрезвычайно велик (65 ккал/моль). Местный перегрев приводит к разложению 1,1,2,2-тетрафторэтана с образованием трифторэтилена и фтористого водорода. Образующийся трифторэтилен в условиях прототипа гидрируется до 1,1,2-трифторэтана. Адиабатические условия предлагаемого способа исключают перегрев и разложение 1,1,2,2-тетрафторэтана с образованием трифторэтилена, фтористого водорода и 1,1,2-трифторэтана. Благодаря этому улучшаются экологические параметры процесса, повышается экономичность производства 1,1,2,2-тетрафторэтана.

Формула изобретения

1. Способ получения 1,1,2,2-тетрафторэтана гидрированием тетрафторэтилена в присутствии катализатора при повышенной температуре, отличающийся тем, что гидрирование ведут в адиабатических условиях при 160 250oС с использованием в качестве катализатора палладия на альфа-оксиде алюминия, при подаче исходного тетрафторэтилена на гидрирование в виде смеси с индифферентным разбавителем при мольном отношении индифферентного разбавителя и тетрафторэтилена, равном 1 6 1.

2. Способ по п. 1, отличающийся тем, что в качестве катализатора используют промышленный алюмопалладиевый катализатор состава, мас.

Палладий 1,8 2 Оксид алюминия Остальное 3. Способ по п. 1, отличающийся тем, что в качестве индифферентного разбавителя используют 1,1,2,2-тетрафторэтан.

4. Способ по п. 1, отличающийся тем, что процесс ведут при мольном отношении водорода и тетрафторэтилена в пределах 0,9 1,2 1.

5. Способ по пп. 2 и 4, отличающийся тем, что процесс ведут с применением предварительного подогрева катализатора путем подачи исходной газообразной смеси, нагретой по крайней мере до 50oС.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к химической промышленности и может быть использовано для удаления примеси хлористого винила из 1,1-дифторэтана (хладона 152a) - озонобезопасного хладона), применяемого как хладагент, порофор, сырье для синтеза фторорганических продуктов

Изобретение относится к области получения галогенуглеводородов этанового ряда, в частности очистки сырца от галогенсодержащих примесей

Изобретение относится к способам изомеризации1,1,2-трифтор-1,2-дихлорэтана /в дальнейшем обозначенным как А123а/ в 1,1,1-трифтор-2,2-дихлорэтан/ в дальнейшем обозначенным как А123/

Изобретение относится к разработке промышленной технологии получения пентафторэтана и/или гексафторэтана фторированием полифторэтанов - тетрафтор-, трифтор-, дифторэтанов или их смесей трифторидом кобальта

Изобретение относится к области получения 1,1,1,2-тетрафторэтана, в частности, к способу очистки этого продукта от ненасыщенных галогенсодержащих примесей, сопутствующих 1,1,1,2- тетрафторэтану в ходе синтеза

Изобретение относится к химической промышленности и может быть использован в производстве дифторхлорметана (хладона 22) для выделения из отходящих газов побочного продукта - трифторметана (хладона 23), являющегося озонобезопасным хладагентом и реагентом для сухого травления

Изобретение относится к области органической химии, а именно, к синтезу фторорганических соединений, в частности к синтезу октафторпропана, который может быть использован в качестве диэлектрика и хладагента

Изобретение относится к химической технологии и может быть использовано в производстве озонобезопасных хладонов: 1-фтор-1,1-дихлорэтана (хладон 141b), 1,1-дифтор-1-хлорэтана (хладон 142b), 1,1,1-трифторэтана (хладон 143a)

Изобретение относится к способу гидрогенолиза галогенуглеводорода формулы CnHmFpClq

Изобретение относится к способу гидрогенолиза галогенуглеводорода формулы CnHmFpClq

Изобретение относится к способу получения 1,1,2,2-тетрафторэтана, заключающемуся в каталитическом гидрировании тетрафторэтилена при повышенной температуре с использованием в качестве катализатора алюмопалладиевого катализатора

Изобретение относится к способу переработки хлорорганических отходов методом гидрогенолиза

Изобретение относится к способу получения хлороформа путем гидрирования четыреххлористого углерода н-парафинами C10-C15 или их смесями в жидкой фазе при температурах 150-180oС и времени контакта 1-8 ч
Наверх