Термометр сопротивления для измерения температур жидких и газообразных сред в трубопроводах

 

Сущность изобретения: термометр сопротивления содержит герметичный корпус, выполненный в виде участка трубопровода. В корпусе размещены термочувствительные элементы (ТЧЭ) в виде проволочных спиралей, закрепленных на каркасе. Каркас оснащен опорой с ребрами, установленной на входе в корпус, и состоит из двух коаксиально расположенных и герметично соединенных между собой цилиндров. На одном из цилиндров выполнены винтовые канавки в виде многозаходной резьбы. ТЧЭ бифилярно уложен в винтовые канавки одного из цилиндров каркаса. Пространство между коаксиальными цилиндрами заполнено газовой смесью. 3 ил.

Изобретение относится к измерительной технике, а именно, к температурным измерениям с помощью электрических преобразователей, и может быть использовано в трубопроводах высокого давления.

Из патентной литературы известен термометр сопротивления [1] содержащий каркас с винтовой канавкой, в которой уложена термочувствительная проволока с выводами, выполненными петлеобразно и закрытыми съемными кольцами. Недостатком термометра является то, что термометр не рассчитан для измерения температуры жидких и газообразных сред под давлением, при его использовании требуется дополнительное оборудование, например, термоблок.

Наиболее близким к заявляемому является термометр сопротивления для измерения низких температур жидких агрессивных сред в трубопроводах малых диаметров [2] содержащий герметичный корпус, выполненный как составная часть трубопровода, установленный в корпусе чувствительный элемент, выполненный из термочувствительной проволоки, закрепленной на каркасе. Недостатком термометра является большая инерционность и невысокая точность измерения, т.е. чувствительный элемент имеет односторонний контакт с измеряемым веществом.

Заявляемое изобретение направлено на повышение надежности и точности измерения температуры контролируемых сред.

Решение указанной задачи достигается тем, что в термометре сопротивления для измерения температур жидких и газообразных сред в трубопроводах, содержащем герметичный корпус, выполненный как составная часть трубопровода и установленный в корпусе термочувстительный элемент, выполненный из проволоки, закрепленной на карасе, последний закреплен в опоре с ребрами, установленной на входе в трубопроводе, и состоит из двух коаксиально расположенных и герметично соединенных между собой цилиндров, на одном из которых выполнены винтовые канавки в виде многозаходной резьбы, термочувствительные проволоки закручены в спираль и бифилярно уложены в винтовые канавки одного из цилиндров каркаса, а пространство между коаксиальными цилиндрами заполнено газовой смесью.

На фиг. 1 дан общий вид термометра сопротивления, на фиг. 2 вид по стрелке А на опору с ребрами, на фиг. 3 в увеличенном виде изображен каркас с винтовыми канавками и бифилярно уложенной спиралью.

Термометр сопротивления содержит герметичный корпус 1, выполненный как составная часть трубопровода ( на фиг. не показано), установленную на входе в корпус опору 2 с ребрами 3, в которых консольно закреплен каркас 4, состоящий из двух коаксиально расположенных цилиндров 5 и 6, для обеспечения герметичности сваренных между собой по торцам 7. На внутренней поверхности цилиндра 5 выполнены винтовые канавки 8 в виде многозаходной (например, шестизаходной) резьбы. Термочувствительные элементы 9, выполненные, например, из платиновой проволоки, закручены в спираль 10, бифилярно уложены в винтовые канавки 8 цилиндра 5 и закреплены в них при помощи клея. Пространство между цилиндрами 5 и 6 заполнено газовой смесью для улучшения теплопередачи. Выводы чувствительности элемента 9 через отверстия в корпусе 1 подводятся и подпаиваются к контактам 11 гермовывода 12, который соединен с разъемом 13. Гермовывод 12 представляет собой корпус 14 с изоляторами 15 и контактами 11, которые выполнены из материалов, сочетание которых произведено с учетом их линейного расширения, что в свою очередь обеспечивает надежную работу устройства при перепадах температур. В корпус 14 вварена трубка 16, через которую в термометр, в зону чувствительного элемента 9 подается газовая смесь. Корпус 14 соединен с герметичным корпусом 1 переходником 17.

Поток контролируемой газовой смеси, попадая в герметичный корпус 1 и проходя через опору 2 с ребрами 3, становится регулируемым и обтекает каркас 4 как с внутренней, так и с наружной стороны, что в свою очередь, повышает точность измерения температуры.

Винтовая канавка 8, выполненная на внутренней поверхности цилиндра 5, проста в изготовления и удобна для размещения чувствительного элемента 9, исключает замыкание его витков между собой и повышает надежность устройства в работе. На поверхность винтовой канавки 8 и на наружную поверхность цилиндра 6 нанесено гальваническое электроизоляционное покрытие для исключения замыкания термочувствительного элемента 9 на корпус. Выполнение канавки в виде многозаходной резьбы позволяет уложить несколько термочувствительных элементов (при шестизаходной резьбе 3 штуки), что дает возможность троировать систему измерения и повысить достоверность показаний.

Формула изобретения

Термометр сопротивления для измерения температур жидких и газообразных сред в трубопроводах, содержащий проволочный термочувствительный элемент, закрепленный на каркасе, установленном в герметичном корпусе, выполненном в виде участка трубопровода, отличающийся тем, что в корпусе со стороны подачи контролируемой среды установлена опора с ребрами, каркас консольно закреплен в ребрах опоры и выполнен в виде двух коаксиально расположенных и герметично соединенных между собой по торцам цилиндров, пространство между которыми заполнено газовой смесью, а термочувствительный элемент бифилярно уложен в канавки многозаходной резьбы, образованные на одном из цилиндров каркаса.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к термометрии, а именно к датчикам температуры на основе пленок металлов, и предназначено для измерения температуры, а также в качестве чувствительного элемента в различных объектах техники, где требуется низкая тепловая инерционность датчика и стабильность его ТКС в широком диапазоне температур эксплуатации

Изобретение относится к устройствам, для измерения температуры жидких и газообразных сред и может быть использовано при океаналогических исследованиях

Изобретение относится к технике измерения температур подвижных и неподвижных сред термопреобразователями сопротивления, в том числе и полупроводниковыми

Изобретение относится к термометрии, а именно к датчику температуры, и может быть использовано в криогенной технике: криоэлектронике, криоэлектротехнике, криомедицине, а также в других отраслях народного хозяйства, где необходимо измерение низких температур

Изобретение относится к термометрии и может быть использовано в устройствах для контроля температуры

Изобретение относится к измерительной технике, точнее, к радиационной пирометрии с использованием полупроводников, чувствительных к излучению, а именно терморезисторов

Изобретение относится к температурным измерениям, а именно к устройствам для измерения разности температур с помощью термопреобразователей сопротивления , удаленных друг от друга и от измерителя

Изобретение относится к способу определения неоднородности температурного поля газового потока, возникающей при сверхкритическом истечении из сопла, реализация его позволяет изучить ранее неизвестное физическое явление и оно может быть использовано в различных отраслях науки и техники, в частности в энергетике, авиационной, химической газовой промышленности и других, использующих сопла со сверхкритическим истечением газа

Изобретение относится к технике контроля и измерения температуры и может быть использовано при изготовлении аппаратуры, контролирующей температуру зерна и зернопродуктов

Изобретение относится к технике, связанной с определением температуры газа, и может быть использовано в агрегатах и устройствах, где в связи с особенностями их работы необходим контроль температуры газовой фазы

Изобретение относится к теплофйзическим измерениям в ионизованных газовых потоках
Наверх