Способ вольтамперометрического анализа

 

Изобретение относится к электрохимическому анализу и может быть использовано при создании аппаратно-программного средств для контроля состава и свойств веществ в различных областях науки, техники, промышленности, сельского хозяйства и экологии, а также для электрохимических исследований. Предлагается способ вольтамперометрического анализа, позволяющий исключить мешающую емкостную компоненту из вольтамперограммы, повысить точность, предел обнаружения, разрешающую способность, скорость развертки и информативность материала. Предлагаемый способ анализа заключается в получении динамической вольтамперной зависимости границы раздела рабочий электрод - раствор при прямом и обратном направлениях циклической развертки поляризующего напряжения и последующем дифференцировании полученной зависимости по напряжению и отличается тем, что перед дифференцированием проводят эквипотенциальное суммирование токов, получаемых при прямом и обратном направлениях изменения поляризующего напряжения. 2 ил.

Изобретение относится к электрохимическому анализу и может быть использовано при создании аппаратно-программных средств для контроля состава и свойств веществ в различных областях науки, техники, промышленности, сельского хозяйства и экологии, а также для электрохимических исследований.

Известны различные способы вольтамперометрического анализа (раньше вольтамперометрический метод анализа часто называли полярографическим, однако согласно современной терминологии ИЮПАК полярография это вольтамперометрия с использованием ртутно-капельных электродов), основанные на получении и измерении параметров динамической вольтамперной зависимости (вольтамперограммы) нестационарного тока I(E, t) электрохимической ячейки (датчика) при подаче поляризующего напряжения E(t) на ее рабочий и вспомогательный электроды. Поскольку одним из главных мешающих факторов, лимитирующих точность и минимально определяемые концентрации, является емкостной компонент Ic(E, t) тока I, определяемый заряжением нелинейной емкости Сд(E,t) двойного слоя, то для выделения информативной фарадеевской составляющей Iф(E,t) из суммарного тока I применяют методы фазовой или временной селекции сигнала с использованием соответствующих форм неполяризующего напряжения: например, синусоидальной или прямоугольной формы, наложенной на медленно изменяющееся развертывающее напряжение, или в виде прямоугольных импульсов с линейно растущей амплитудой (Бонд А.М. Полярографические методы в аналитической химии. М. Химия, 1983, с. 160, 193, 260). Применяется также разностный метод, основанный на измерении разности токов двух ячеек, в одном из которых содержится опорный раствор без анализируемых компонентов (там же, с. 110, 152). Иногда вместо второй ячейки используется конденсатор, емкость которого вручную подбирается равной минимальному значению емкости Сд(Е) в рабочей области потенциалов (Брук Б.С. Полярографические методы, М. Энергия, 1972, с. 130). Все эти методы по ряду причин не дают полного устранения емкостного тока Iс.

Наиболее близким к изобретению по технической сущности является способ циклической вольтамперометрии с использованием линейно изменяющегося симметрично-треугольного поляризующего напряжения, который благодаря ряду своих достоинств (простоте реализации, высокой экспрессности и большой информативности) широко применяется в настоящее время как для экспресс-анализа состава вещества, так и для исследовательских целей (там же, с. 120, рис. 51в; Стрелец В. В. Электрохимия, 1992, т. 28, N4, с. 490). Способ основан на получении и измерении параметров пиков динамической вольтамперной зависимости I(E,t) при достаточно быстром изменении поляризующего напряжения.

Изменение напряжения в отрицательном направлении называют катодным, в положительном направлении анодным или иначе катодной и анодной развертками поляризующего напряжения. При этом в циклической вольтамперометрии развертка может быть сначала катодной, а затем анодной или наоборот сначала анодной, а затем катодной. В обоих случаях начальное направление развертки называют прямым, а противоположное направление обратным [1] При этом мешающий емкостной компонент Iс регистрируемого тока является одним из основных факторов, лимитирующих не только точность и минимально измеряемые концентрации веществ, но и скорость V развертки, определяющую информативность циклической вольтамперометрии при исследовании электрохимических реакций. Другим фактором, препятствующим правильной расшифровке вольтамперограммы, является ее недостаточная разрешающая способность, обусловленная наложением близко расположенных пиков, обычно имеющих затяжную спадающую часть. Для уменьшения емкостного компонента Iс в циклической вольтамперометрии иногда используют вместо линейно-изменяющегося треугольного напряжения поляризующее напряжение, состоящее из мелких ступеней, с постоянной средней скоростью изменения V (Бонд А. М. там же, с. 143). Однако при этом устранение Iс также неполное и эффективность такого способа снижается с ростом скорости развертки V. Определенное повышение разрешающей способности достигается дифференцированием измеряемого тока I по напряжению Е. Однако при обычном дифференцировании (первого порядка) пики вольтамперограммы приобретают неудобную для расшифровки несиметричную форму (там же, с. 146, рис. 5.23), а дробное дифференцирование половинного порядка (полудифференцирование) дает дифференцирование половинного порядка (полудифференцирование) дает симметричные, но недостаточно узкие пики (там же, с. 151, рис. 5.30).

Технической задачей изобретения является исключение мешающего емкостного компонента из вольтамперограммы и повышение ее разрешающей способности в целях снижения минимально определяемых концентраций, повышения точности измерений и возможности увеличения скорости развертки.

Для решения задачи предлагается способ вольтамперометрического анализа, заключающийся в получении динамической вольт-амперной зависимости границы раздела рабочий электрод раствор при прямом и обратном направлениях циклической развертки поляризующего напряжения и последующем дифференцировании полученной зависимости по напряжению, отличающийся тем, что перед дифференцированием проводят эквипотенциальное суммирование токов, получаемых при прямом и обратном направлениях изменения поляризующего напряжения. При этом под эквипотенциальным сложением подразумевается сложение токов, соответствующих одинаковым значениям поляризующего напряжения при его изменениях в прямом и обратном направлениях.

Сущность изобретения заключается в следующем. Поскольку в вольтамперометрии применяются специальные меры для соответствия поляризующего напряжения и разности потенциалов на двойном слое рабочего электрода (потенциостатический режим поляризации), то вольтамперные зависимости емкостных компонент тока Iс(Е) при прямой и обратной развертках E(t) отличаются друг от друга лишь изменением направления тока Iс на противоположное, обусловленное изменения знака V (там же, с. 140). Поэтому сумма этих зависимостей (при эквипотенциальном сложении емкостных компонент) равна нулю. В то же время зависимости Iф(Е) фарадеевской компоненты при прямой и обратной развертках отличаются не только по знаку, но и по характеру изменения и поэтому при эквипотенциальном сложении дают суммарную вольт-амперную зависимость, резко изменяющуюся по величине и знаку вблизи потенциала полуволны. Поэтому после дифференцирования зависимость производной суммарного тока dI/dE от напряжения Е содержит фарадеевский компонент, имеющий форму узкого симметричного пика (при обратимой реакции анализируемого вещества), а емкостной компонент отсутствует. При этом высота пика остается пропорциональной концентрации анализируемого вещества, а его полуширина (ширина на уровне 0,5 от максимума) в 1,4 раза меньше, чем при указанном полудифференцировании вольт-амперной кривой. Таким образом, предлагаемый способ вместе с устранением емкостной составляющей, позволяющим повысить точность, чувствительность и скорость развертки, одновременно дает увеличение разрешающей способности. Кроме того, в случае более сложных условий протекания электрохимических реакций параметры пика (его высота, ширина, симметрия, положение на оси потенциалов) сильно зависят от кинетических параметров реакции. Так что получаемая предлагаемым способом вольтамперограмма имеет высокую информативность при исследовании подобных реакций. Существенным отличием от известного способа циклической вольтамперометрии является то, что полученная данным способом вольтамперограмма, сохраняя свою информативность, становится однозначной: каждому значению потенциала Е соответствует одно значение dI/dE (а не два знакопеременных значения, соответствующих прямой и обратной анодной разверткам). При этом, кроме указанных преимуществ, повышается эффективность использования рабочего поля регистратора вольтамперограммы.

На фиг. 1 в качестве примера приведена функциональная схема аналого-цифрового вольтамперографа, реализующая предложенный способ и содержащая цифровой блок 1, включающий микропроцессор, генератор тактовых импульсов, оперативное и постоянное запоминающие устройства; генератор поляризующего напряжения 2, управляемый цифровым блоком; измерительный (аналоговый) блок 3, состоящий из потенциостата, обеспечивающего потенциостатический режим поляризации электрохимической ячейки и преобразователя измеряемый ток напряжение; ячейку 4 с исследуемым раствором; аналого-цифровой преобразователь 5; регистрирующее устройство 6.

Блок 1 автоматически осуществляет в цифровом виде запоминание и эквипотенциальное сложение вольтамперных зависимостей, получающихся при прямой и обратной развертке напряжения, а также дифференцирование суммарной зависимости по напряжению. При этом аналоговый сигнал с выхода блока 3 предварительно преобразуется с помощью АЦП 5 в цифровой код. Использование в таком приборе быстродействующих цифровых микросхем, например, К1810ВМ88 (микропроцессор), К1108ПВ1 (АЦП), К1810ГФ84 (генератор тактовых импульсов), К537РУ17 (ОЗУ) и К573РФ6 (ПЗУ) позволяют при необходимости реализовать достаточно высокие скорости развертки (до 1 кВ/с).

На фиг. 2 в качестве примера для одних и тех же условий (раствор содержит 310-6М Tl+ и 310-6М Cd2+ в 0,1М KCl, V=IВ/с, ртутный рабочий электрод) приведены исходная вольтамперограмма 1 и кривая 2, полученная предложенным способом. Видно, что в таких условиях на исходной кривой 1 мешающий емкостной компонент тока оказывается значительно больше фарадеевского компонента, что существенно затрудняет качественную и количественную расшифровку кривой, в то время как кривая 2 не содержит емкостного компонента, а узкие пики таллия и кадмия разрешаются практически полностью.

Формула изобретения

Способ вольтамперометрического анализа, заключающийся в получении динамической вольтамперной зависимости границы раздела рабочий электрод - раствор при прямом и обратном направлениях циклической развертки поляризующего напряжения и последующем дифференцировании полученной зависимости по напряжению, отличающийся тем, что перед дифференцированием проводят эквипотенциальное суммирование токов, получаемых при прямом и обратном направлениях изменения поляризующего напряжения.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к области аналитической химии, в частности к вольтамперометрическим способам определения в водных растворах

Изобретение относится к области электрохимических измерений, а именно к устройству для электрохимических измерений (варианты)

Изобретение относится к аналитической измерительной технике, а именно к способу вольт-амперометрии, включающему подачу на электрохимическую ячейку поляризующего напряжения и измерение тока через нее, при этом перед каждым моментом измерения подключают в преобразователе тока электрохимической ячейки в напряжение эталонный резистор, на котором производят преобразование тока электрохимической ячейки в напряжение, с максимальным сопротивлением, при котором не происходит перегрузка усилителя преобразователя, а сигнал с выхода преобразователя тока в напряжение подают на вход масштабного преобразователя, коэффициент передачи которого устанавливают обратно пропорциональным сопротивлению подключенного эталонного резистора, а затем измеряют сигнал на выходе масштабного преобразователя

Изобретение относится к медицине и может быть использовано для иммунодиагностики инфекций

Изобретение относится к физико-химическим методам анализа водных растворов, а именно, к устройству для электрохимического определения органических примесей в воде путем реализации заданной временной диаграммы потенциалов, содержащему электрохимическую ячейку с тремя электродами, из которых платиновый рабочий электрод подсоединен к инвертируемому входу токового усилителя, выход которого соединен с измерительно-информационной системой, управляемой программно-задающим устройством, сравнительный электрод подсоединен к входу согласующего усилителя, вспомогательный электрод подсоединен к выходу регулирующего усилителя, инвертированный вход которого через параллельные масштабные резисторы подключен к выходу согласующего усилителя и программно-задающему устройству, при этом к выходу токового усилителя подключена система автоматической подстройки нулевого уровня потенциалов временной диаграммы, состоящая из последовательно соединенных двухполупериодного выпрямителя, преобразователя напряжение-частота, управляемых от программно-задающего устройства реверсивного двоичного счетчика и двоичного регистра, цифроаналогового преобразователя, первого сумматора напряжений с выходом через первый масштабный резистор на инвертируемый вход регулирующего усилителя и резистора, задающего на первом сумматоре напряжений область смещения нулевого уровня потенциалов временной диаграммы, к инвертированному входу регулирующего усилителя через второй масштабный резистор подключен управляемый от программно-задающего устройства второй сумматор напряжения, выполняющий роль электронного компенсатора смещения нулевого уровня временной диаграммы потенциалов, к выходу токового усилителя подсоединен коммутирующий элемент для подключения информационных сигналов к цифровой индикации измерительно-информационной системы

Изобретение относится к аналитической химии, в частности к инверсионному вольтамперометрическому способу определения хлориндия фталоцианина, проявляющего заметную фотоэлектрохимическую активность

Изобретение относится к аналитической химии органических соединений, а именно к способу определения гидрохинона и гваякола или пирокатехина и гваякола в водных растворах вольтамперометрическим методом, при этом пробу предварительно обрабатывают диоксаном в присутствии сульфата аммония и определение проводят в выделившейся органической фазе на стеклоуглеродном электроде при pH 2-3

Изобретение относится к области аналитической химии, а именно к микропроцессорному вольтамперометрическому анализатору тяжелых металлов ABC-1, содержащему трехэлектродную электрохимическую ячейку, включающую рабочий электрод, вспомогательный электрод и электрод сравнения, и блок управления вращением рабочего электрода, при этом трехэлектродная электрохимическая ячейка и блок управления вращением рабочего электрода выполнены в виде единого блока электрохимического датчика, анализатор снабжен потенциостатом, аналоговым сумматором, цифроаналоговым преобразователем линейно меняющегося напряжения, цифроаналоговым преобразователем переменного напряжения, устройством разрыва входной цепи, входным усилителем-преобразователем, устройством выбора режима развертки, схемой выборки/хранения, аналого-цифровым преобразователем и микропроцессорным блоком, включающим модуль управления входными устройствами, модуль синхронного детектора, модуль цифрового фильтра, модуль буфера накопления, модуль алфавитно-цифрового дисплея, модуль обслуживания алфавитно-цифрового дисплея, модуль индикации, модуль связи с внешними устройствами, состоящий из модуля порта последовательной передачи данных и модуля порта параллельной передачи данных, и блок постоянной памяти, содержащий задающий генератор линейно меняющегося напряжения, задающий генератор переменного напряжения, модуль редактирования параметров развертки, программный таймер, модуль выбора режима работы и модуль цифровой обработки, один из входов которого соединен с соответствующим выходом модуля выбора режима работы, второй вход модуля цифровой обработки соединен с выходом модуля буфера накопления, один из входов которого соединен с выходом модуля цифрового фильтра, второй вход модуля буфера накопления подключен к одному из выходов аналого-цифрового преобразователя, другой выход которого через модуль синхронного детектора соединен с одним из входов модуля цифрового фильтра, другой вход которого подключен к одному из выходов модуля выбора режима работы, второй вход модуля синхронного детектора соединен со вторым выходом модуля выбора режима работы, третий выход которого через программный таймер соединен с соответствующими входами задающего генератора линейно меняющегося напряжения и задающего генератора переменного напряжения, вторые входы которых подключены к соответствующим выходам модуля редактирования параметров развертки, вход которого объединен с входом модуля выбора режима работы, и подключены к выходу модуля обслуживания алфавитно-цифрового дисплея, четвертый выход модуля выбора режима работы соединен с одним из входов модуля индикации, другой вход которого подключен к третьему выходу программного таймера, четвертый выход которого соединен со входом модуля управления входными устройствами, а пятый выход программного таймера подключен к третьему входу модуля синхронного детектора, один из выходов модуля цифровой обработки соединен с модулем алфавитно-цифрового дисплея, второй и третий выходы модуля цифровой обработки подключены соответственно к модулю порта последовательной передачи данных и к модулю порта параллельной передачи данных, выход модуля управления входными устройствами соединен одновременно с соответствующими входами последовательно соединенных аналого-цифрового преобразователя, схемы выборки/хранения, устройства выбора режима развертки, входного усилителя-преобразователя и устройства разрыва входной цепи, выход модуля управления входными устройствами соединен также с одним из входов блока управления вращением рабочего электрода, соединенного одновременно с соответствующим входом устройства разрыва входной цепи и с рабочим электродом, вспомогательный электрод и электрод сравнения подключены к соответствующим выходам потенцистата, включенного последовательно с аналоговым сумматором, первый и второй входы которого соединены соответственно с выходами цифроаналогового преобразователя линейно меняющегося напряжения и цифроаналогового преобразователя переменного напряжения, первые входы цифроаналогового преобразователя линейно меняющегося напряжения и цифроаналогового преобразователя переменного напряжения объединены и подключены к выходу задающего генератора линейно меняющегося напряжения, а вторые их объединенные входы подключены к входу задающего генератора переменного напряжения

Изобретение относится к области аналитической химии, в частности к инверсионному вольтамперометрическому способу определения водорасторимых витаминов B1 B2 в пищевых продуктах

Изобретение относится к области аналитической химии, а именно к способу инверсионно-вольт-амперометрического определения разновалентных форм мышьяка в водных растворах, основанному на электронакоплении As (III) на стационарном ртутном электроде в присутствии ионов Cu2+ и последующей регистрации кривой катодного восстановления сконцентрированного арсенида меди, включающему определение содержания As (III) на фоне 0,6 M HCl + 0,04 M N2H4 2HCl + 50 мг/л Cu2+ по высоте инверсионного катодного пика при потенциале (-0,72)В, химическое восстановление As(V) до As (III), измерение общего содержания водорастворимого мышьяка и определение содержания As(V) по разности концентраций общего и трехвалентного мышьяка, при этом в раствор, проанализированный на содержание As (III), дополнительно вводят HCl, KI и Cu2+, химическое восстановление As(V) до As (III) осуществляют в фоновом электролите состава 5,5M HCl + 0,1M KI + 0,02M N2H4 2HCl + 100 мг/л Cu2+, электронакопление мышьяка производят при потенциале (-0,55 0,01)В, катодную вольт-амперную кривую регистрируют в диапазоне напряжений от (-0,55) до (-1,0)В, а общее содержание мышьяка в растворе определяют по высоте инверсионного пика при потенциале (-0,76 0,01)В

Изобретение относится к области аналитической химии, в частности к вольтамперметрическому способу определения химико-терапевтического средства, применяемого при онкологических заболеваниях - 5-фторурацила

Изобретение относится к способу и устройству для определения концентрации органических веществ в растворах

Изобретение относится к аналитической химии, в частности к вольтамперометрическим способам определения в водных растворах

Изобретение относится к области электрохимических методов анализа, в частности для определения тяжелых металлов с использованием модифицированного электрода
Изобретение относится к области аналитической химии, в частности к инверсионно-вольтамперометрическому способу определения лекарственного препарата кардила

Изобретение относится к устройствам для электрохимических, в том числе для коррозионных измерений, и может быть использовано в нефтегазовой, химической, металлургической и других отраслях промышленности
Наверх