Способ получения добавки к полимерным и строительным материалам

 

Использование: в качестве добавок в производстве серных бетонов, дорожных покрытий, строительных изделий и конструкций, битумов, при вулканизации резин, в качестве пластифицирующих добавок, антизадирных добавок к смазкам и т.д. Сущность: добавку к полимерным и строительным материалам получают взаимодействием серы с эфирами ненасыщенных кислот с C4-C57. Процесс проводят в присутствии гидроксида щелочного металла, взятого в количестве 0,5-2,0% от массы серы. Массовое соотношение серы и эфира ненасыщенных кислот с C4-C57 может составлять (80-95):(5-20). Способ можно осуществлять в расплаве битума, взятом в количестве 80-95% от массы реакционной смеси, а продукт взаимодействия можно выделять введением 1-1,5 объема ароматического углеводорода на 1 объем расплава. Полученная добавка отличается низкой температурой плавления (50-70oC), пенетрацией >300, высокой морозостойкостью (до -30oC), что обеспечивает материалам, содержащим эту добавку, высокую технологичность и улучшенные физико-химические характеристики. 3 з.п. ф-лы. 4 табл.

Изобретение относится к области производства серосодержащих органических соединений на основе продуктов взаимодействия серы с эфирами ненасыщенных кислот с C4-C57, которые могут быть использованы в качестве добавок в производстве серных бетонов, дорожных покрытий, строительных изделий и конструкций, битумов; при вулканизации резин; пластифицирующих добавок; антизадирных добавок к смазкам и т.д.

Известно использование серы и ее соединений в различных областях техники. В настоящее время перспективным направлением является использование серы в производстве серобетонов и cерно-битумных связующих, применяемых в различных отраслях строительства.

Известны серно-битумные связующие [1] для дорожных покрытий, которые получают путем ввода в битум до 50% элементарной жидкой серы при нагревании в специальных смесителях. Эти связующие обладают улучшенными химическими и реологическими свойствами. Однако использование элементарной серы вызывает коррозию, производство взрывоопасно, токсично, т.е. выделяется сероводород, и связующее не стабильно, так как равномерность распределения серы труднодостижимо.

Известны сернобитумные защитные составы на основе серы 40-59% битума 40-59% и анилина 0,1-2,1 [2] который получают вводом битума в расплав серы при высоких температурах с последующим вводом анилина, непосредственно перед использованием состава. Составы характеризуются хорошей химстойкостью, однако, как и в первом случае, токсичны и взрывоопасны.

Известен метод производства бетонов [3] где используются в качестве пластификатора расплавленная серы с добавкой дициклопентадиена, стирола, терпена, полисульфида или их смесей в количестве до 5 мас. серы, а содержание серы в смеси составляет 3-10% причем сера с добавкой совмещается либо предварительно, либо она вводится отдельно, с последующим вводом добавки. Изделия, содержащие серу, пластифицированную добавками, имеют хорошую морозостойкость и кислотостойкость. Однако при изготовления изделия их подвергают нагреву до 200-250oC, что приводит к выделению сероводорода, т.е. повышается токсичность, взрывоопасность.

Близким техническим решением является способ получения связующего для серного бетона [4] на основе продуктов взаимодействия серы и дициклопентадиена, которое получают при нагревании смеси серы с дициклопентадиеном при их соотношении (98-92) (2-8)вес. соответственно, причем время смешения зависит от температуры расплава 120-160oC. Чем выше температура, тем меньше время смешивания, преимущественно при 130-145oC. Серные бетоны на основе этих продуктов отличаются хорошими физико-химическим свойствами. Однако температура изготовления изделий очень высокая - 120-160oC. При таких температурах выделяется сероводород. Процесс энергоемок.

Задачей предлагаемого изобретения является создание универсального, экологически чистого способа получения сополимеров серы с ненасыщенными соединениями, которые могут использоваться с различными функциональными назначениями, например, как связующее вяжущее при производстве серных бетонов, различных покрытий (дорожных, аэродромных и т.п.), в строительстве и др. как вулканизаторы в резиновой технике, как пластификаторы, как антизадирные добавки к различным смазкам.

Поставленная задача решается тем, что сополимеризацию серы проводят с эфирами ненасыщенных кислот с C4-C57 при их соотношении от 95:5 до 80:20 при 130-200oC в присутствии катализаторов в количестве 0,5-2,0 мас. серы.

Кроме того, сополимеризацию серы с ненасыщенными соединениями можно проводить в 80-95% расплавах битумов.

При необходимости сополимеры выделяют из битумных растворов ароматическими углеводородами, вводя их 1-1,5 объема на 1 объем реакционного расплава с последующей фильтрацией, промывкой и сушкой любым известным методом и стабилизацией.

В зависимости от функционального назначения сополимеры используются либо в твердом виде, либо в расплавах битума. Например, в дорожных пропиточных материалах сополимеры лучше использовать в виде битумных расплавов.

Предлагаемые сополимеры серы во всех материалах на их основе стабильно обеспечивают улучшение морозостойкости, прочностных показателей, понижение температуры изготовления изделий и, в каждом конкретном материале, его специфических свойств, например, при их использовании как вулканизирующих добавок, улучшается сопротивление раздиру вулканизаторов.

Использование эфиров ненасыщенных кислот позволяет получать поверхностно-активные карбоксильные группы на концах молекул, что обеспечивает хорошие адгезионные свойства, а также связать свободный сероводород, всегда находящийся в сере или выделяющийся при окислении углеводородов.

В качестве серы может быть использована природная сера, чистая твердая сера, жидкая сера, отходы серные в нефтяных, нефтеперегонных, нефтехимических производствах; в производствах минеральных удобрений и др.

В качестве эфиров ненасыщенных кислот с C4-C57 могут быть использованы эфиры акриловой, метакриловой, кротоновой, ундецилиновой, олеиновой, рицинолевой и других кислот, например, метилметакрилат, касторовое масло (>50% глицирида рицинолевой кислоты).

В качестве катализатора могут быть использованы гидроокиси щелочных металлов, предпочтительно, натрия и калия.

В качестве битумов используют вязкие дорожные битумы, жидкие дорожные битумы, хрупкие нефтяные битумы, изоляционные битумы и строительные битумы.

В качестве стабилизаторов могут использоваться сложные эфиры 3,5-ди-третбутил-4-оксифенил пропионовой кислоты.

В качестве углеводородов используют бензол, толуол, ксилол, сероуглерод и т.п.

Процесс проводят в обогреваемом актоклаве, снабженном якорной мешалкой с числом оборотов >60 об/мин, системой вакуумирования и контрольно -измерительными приборами.

В табл. 1 приведены характеристики конкретного сырья, используемого в примерах.

В реактор с емкостью, соответствующей загрузке компонентов, вводят серу и органическую добавку при соотношении от 95:5 до 80:20 и катализатор в количестве 0,5-2% от массы серы, нагревают до 130-200oC, предпочтительно 160-170oC в течение 50-90 мин, вакуумируют 20-40 мин, после чего реакционную смесь выгружают и анализируют полученный сополимер. Получаемый сополимеры представляют собой порошок светло-желтого цвета с температурой плавления 50 80oC, морозостойкостью -20 -30oC.

В случае проведения сополимеризации в расплавах битума в реактор вначале вводят битум из расчета получения 80 -95% концентрации расплава, затем вводят органическую добавку, серу и катализатор, подогревают смесь до 130 -200oC и в течение 50-90 мин перемешивают. Далее обогрев выключают, массу охлаждают до 80oC и вводят 1-1,5 объема углеводорода, перемешивают в течение 2-3,5 ч. Образовавшуюся жидкую суспензию выгружают и фильтруют. Порошок сополимера сушат при 40-45oC, фильтрат направляют на регенерацию.

В случае использования сополимеров в расплавах битума, синтез останавливают после стадии выдержки смеси при 130-200oC в течение 50-90 мин. Растворы представляют собой при нормальной температуре вязкотвердую массу.

Изобретение иллюстрируется следующими конкретными примерами.

Пример 1.

Реактор загружают 500 г смеси следующего состава, мас.

сера 94,55 касторовое масло 4,98 гидроокись натрия 0,47.

Поднимают температуру до 170oC, включают мешалку, смесь выдерживают в течение 1 ч при этой температуре, затем производят выдержку под вакуумом в течение 0,5 ч, заполняют реактор азотом выгружают сополимер, измельчают до порошкообразного состояния и стабилизируют 0,5 г. Ирганокса-1010. Готовый продукт анализируют. Результаты анализа приведены в табл. 2.

Пример 2.

Условия те же, что и в примере 1, но загружают смесь следующего состава, мас.

сера 93,23 касторовое масло 4,91 гидроокись натрия 1,86 Пример 3.

Условия те же, что и в примере 1, но загружают смесь следующего состава, мас.

сера 79,68 касторовое масло 19,92 гидроокись натрия 0,4.

Пример 4.

Условия те же, что и в примере 1, но загружают смесь следующего состава, мас.

сера 78,74 касторовое масло 19,69 гидроокись натрия 1,57.

Пример 5.

Условия те же, что и в примере 1, но загружают смесь следующего состава, мас.

сера 94,55
метилметакрилат 4,98
гидроокись натрия 0,47.

Пример 6.

Условия те же, что и в примере 1, но загружают смесь следующего состава, мас.

сера 93,23
метилметакрилат 4,91
гидроокись натрия 1,86.

Пример 7.

Условия те же, что и в примере 1, но загружают смесь следующего состава, мас.

сера 79,68
метилметакрилат 19,92
гидроокись натрия 0,4
Пример 8.

Условия те же, что и в примере 1, но загружают смесь следующего состава, мас.

сера 78,74
метилметакрилат 19,69
гидроокись натрия 1,57.

Пример 9.

В реактор загружают 500 г смеси следующего состава, мас.

битум 95
мономерная смесь по примеру 1-5
Поднимают температуру до 170oC, включают мешалку, смесь выдерживают при температуре 170oC в течение 1 ч, вакуумируют в течение 0,5 ч, заполняют азотом, добавляют 1,5 объема бензола, смесь выдерживают в течение 2 ч при температуре не выше 40oC.

Осадок сополимера в виде порошка отфильтровывают, промывают сероуглеродом, сушат, стабилизируют и анализируют.

В случае получения сополимера в расплаве битума после вакуумирования и заполнения азотом, расплав выгружают из реактора, стабилизируют и анализируют. Результаты приведены в табл. 3.

Примеры 10-16 проводятся аналогично примеру 9, а загрузка мономеров соответствует примерам 2-8.

Пример 17.

Условия процесса те же что и в примере 9, но состав загрузки следующий, мас.

битум 80
смесь мономеров по примеру 1-20.

Примеры 18-24 проводятся аналогично примеру 17, а загрузка мономеров соответствует примерам 2-8.

Пример 25 (сравнительный).

Условия процесса по примеру 9, а в качестве мономеров используют чистую элементарную молотую серу, состав загрузки, мас.

битум 95
сера 5
В процессе синтеза наблюдается бурное выделение сероводорода.

Из данных, приведенных в примерах и табл. 1-6 следует, что предлагаемый способ сополимеризации серы с эфирами ненасыщенных кислот отличается простой, стабильностью, возможностью регулирования свойств получаемых новых сополимеров в широком диапазоне.

В случае проведения сополимеризации в расплавах битума можно использовать отходы серы от различных производств (нефтедобычи, переработки нефти и т.п.) без ухудшения свойств сополимеров.

Использование эфиров обеспечивает получение сополимеров, которые при применении в различных материалах не выделяют сероводород. Сероводород не выделяется также в процессе их получения и переработки, что делает процессы не взрывоопасными, не токсичными, не наблюдается коррозия оборудования, процесс экологически чист. Такими свойствами не обладают процесс и материалы, полученные по прототипу.

Новые сополимеры характеризуются низкой температурой плавления и пониженной вязкостью (пенетрация >300), что обеспечивает высокую технологичность производств материалов и снижение их энергоемкости. Сополимеры имеют повышенную морозостойкость (до -30oC), что позволяет применять материалы на их основе при очень низких температурах, например в условиях Севера.

Кроме того, новые сополимеры, имеющие поверхностно-активные группы, отличаются улучшенными адгезионными и прочностными характеристиками.


Формула изобретения

1. Способ получения добавки к полимерным и строительным материалам взаимодействием серы с ненасыщенным соединением при нагревании, отличающийся тем, что в качестве ненасыщенного соединения используют эфиры ненасыщенных кислот с С4 С57 и процесс проводят в присутствии гидроксида щелочного металла в количестве 0,5 2% от массы серы.

2. Способ по п.1, отличающийся тем, что массовое соотношение серы и ненасыщенного соединения составляет 80 95 5 20.

3. Способ по пп.1 и 2, отличающийся тем, что взаимодействие серы и эфира ненасыщенных кислот осуществляют в расплаве битума, взятом в количестве 80 - 95% от массы реакционной смеси.

4. Способ по п.3, отличающийся тем, что продукт взаимодействия выделяют введением 1 1,5 объема ароматического углеводорода на 1 объем расплава.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7



 

Похожие патенты:

Изобретение относится к получению строительных материалов, а именно, к использованию поверхностно-активных веществ (ПАВ) для улучшения адгезии битума к кислым горным породам

Изобретение относится к области получения строительных материалов, а именно к приготовлению полимербитумного вяжущего (ПБВ) [1] Известен способ повышения физико-механических свойств дорожного битума путем введения нагретых до 80 200oC дивинилстирольных блок-полимеров общей формулы (C8H8)n-(C4H6)n - (C8H8)n в количестве 0,1 10% от массы битума [2] относящихся к полимерам класса термоэластопластов, которые выпускаются в России на Воронежском заводе СК под марками ДСТ-30Р-01 и ДСТ-30-01, а за рубежом фирмами "Шелл" под марками Карифлекс ТР 1184 и Кратон 1101; "Петрофина" Финапрен 411, "Эникем" Европрен Сол-Т-161

Изобретение относится к дорожно-строительным материалам, в частности к поверхностно-активным добавкам для дорожных битумов, и может быть использовано при устройстве асфальтобетонных покрытий с целью улучшения адгезии битумов к сухой и влажной поверхности материалов кислых и основных пород

Изобретение относится к технологии производства дорожно-строительных материалов и может быть использовано для утилизации гранулированного доменного шлака металлургических производств и нефтесодержащего шлама - отхода очистки эмульсионных и маслосодержащих сточных вод подшипниковой промышленности и машиностроения

Изобретение относится к производству строительных материалов, используемых в качестве пропиточного материала, гидроизоляции, связующего при производстве тепло-эвукоизоляции и в дорожном строительстве

Изобретение относится к составам фрикционного материала с включением асбеста и каучукового связующего

Изобретение относится к производству тормозных колодок для легкого автомобильного транспорта, а именно к формовочным композициям для фрикционных изделий

Изобретение относится к получению строительных материалов, а именно, к использованию поверхностно-активных веществ (ПАВ) для улучшения адгезии битума к кислым горным породам

Изобретение относится к области строительных кровельных и гидроизоляционных рулонных материалов

Изобретение относится к области строительных кровельных и гидроизоляционных рулонных материалов

Изобретение относится к получению полимерных композиций на основе ненасыщенных эластомеров и может быть использовано в производстве синтетических каучуков и латексов

Изобретение относится к области получения строительных материалов, а именно к приготовлению полимербитумного вяжущего (ПБВ) [1] Известен способ повышения физико-механических свойств дорожного битума путем введения нагретых до 80 200oC дивинилстирольных блок-полимеров общей формулы (C8H8)n-(C4H6)n - (C8H8)n в количестве 0,1 10% от массы битума [2] относящихся к полимерам класса термоэластопластов, которые выпускаются в России на Воронежском заводе СК под марками ДСТ-30Р-01 и ДСТ-30-01, а за рубежом фирмами "Шелл" под марками Карифлекс ТР 1184 и Кратон 1101; "Петрофина" Финапрен 411, "Эникем" Европрен Сол-Т-161

Изобретение относится к способам получения резиновой смеси

Изобретение относится к способам приготовления строительных смесей
Наверх