Способ переработки материалов

 

Изобретение может быть использовано при измельчении рудного и нерудного сырья. В способе переработки материалов, включающем подачу материала с водой в кольцеобразную зону измельчения сверху, объемное сжатие материала в зоне измельчения, истирание частиц материала друг о друга при одновременном импульсном воздействии на частицы в момент их деформации и разрушения высокотемпературным потоком жидкости, перегретым паром или горячим воздухом, смешение измельченного продукта с холодной водой и удаление пульпы снизу, подачу материала с водой или раствором ПАВ в кольцеобразную зону измельчения и смешение измельченного продукта с водой осуществляют после предварительной электрохимической обработки подаваемой в процесс измельчения воды или раствора ПАВ в электролизере, импульсное воздействие на частицы материала осуществляют одновременно с подачей маслообразных и поверхностно-активных веществ. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области горнорудной промышленности, в частности к измельчению различных материалов, и может быть использовано при измельчении рудного и нерудного сырья.

Известен способ переработки материалов, осуществляемый в мельнице для переработки материалов [1], включающий подачу исходного материала с водой в кольцеобразную зону измельчения сверху, объемное сжатие материала в зоне измельчения, истирание частиц материала друг о друга принудительным полиградиентным перемещением концентричных слоев материала при одновременном резком высокоградиентном температурном воздействии на частицы материала в момент их деформации и разрушения высокотемпературным потоком жидкости, перегретым паром или горячим воздухом, смешение измельченного продукта с холодной водой и удаление продуктов измельчения снизу.

Недостатком известного способа [1] является то, что он не имеет операций для качественной подготовки поверхности алмазов для физико-химических методов обогащения при ее механоактивации.

Наиболее близким по технической сущности и достигаемому результату является способ переработки материалов [2], включающий подачу исходного материала с водой в кольцеобразную зону измельчения сверху, объемное сжатие материала в зоне измельчения, истирание частиц материала друг о друга принудительным полиградиентным перемещением концентричных слоев материала при одновременном импульсном воздействии на частицы материала в момент их деформации и разрушение высокотемпературным потоком жидкости, перегретым паром или горячим воздухом, смешение измельченного продукта с холодной водой и удаление продуктов измельчения снизу, осуществляемый в мельнице для переработки материалов [2], содержащей рабочую камеру, ротор на вертикальном валу с нижним приводом, загрузочное и разгрузочное устройства, рабочая камера снабжена расположенным по периферии ее верхней части кольцевым перфорированным коллектором для воды, ротор выполнен в виде пустотелого прямого конуса с водоподводящим и парогазоподводящим патрубками и равномерно расположенными по его окружности вдоль образующих поверхности футеровочными ребрами, при этом в межреберных впадинах выполнены наклонные к основанию конуса сквозные каналы, разгрузочное устройство выполнено в виде расположенной под основанием конуса приводной тарели, образующей с нижним торцем рабочей камеры кольцевой зазор, перекрываемый посредством обечайки с зубчатым нижним торцем, причем последняя выполнена с возможностью перемещения вдоль рабочей камеры, а по окружности тарели концентрично с ней смонтировано уплотнительное кольцо с эластичной прокладкой, имеющее зазор с закрепленным против него скребком для съема продуктов измельчения с поверхности тарели, загрузочное устройство выполнено в виде шнека, расположенного над ротором по его оси, при этом вал шнека жестко связан с ротором в верхней его части.

В данном способе частично устранены недостатки, присущие способу [1]. Вместе с тем и он имеет недостаток, как и способ [1], связанный с отсутствием необходимых операций, обеспечивающих качественную подготовку поверхности алмазов для физико-химических методов обогащения при ее механоактивации, проявляющийся при последующем обогатительном процессе.

Целью изобретения является повышение качества подготовки поверхности частиц полезного компонента при непрерывном интенсивном измельчении материала для последующего эффективного их извлечения физико-химическими методами обогащения.

Для этого в способе переработки материалов, включающем подачу материала с водой в кольцеобразную зону измельчения сверху, объемное сжатие материала в зоне измельчения, истирание частиц материала друг о друга принудительным полиградиентным перемещением концентрических слоев материала при одновременном импульсном воздействии на частицы в момент их деформации и разрушения высокотемпературным потоком жидкости, перегретым паром или горячим воздухом, смешение измельченного продукта с холодной водой и удаление пульпы снизу, подачу материала с водой (раствором ПАВ) в кольцеобразную зону измельчения и смешение измельченного продукта с водой осуществляют после предварительной электрохимической обработки подаваемой в процесс измельчения воды (раствора ПАВ) в электролизере, импульсное воздействие на частицы материала осуществляют одновременно с подачей маслообразных и поверхностно-активных веществ.

При создании изобретения авторы исходили из следующего.

Свежеобразованная поверхность частиц, включая и алмазы при их раскрытии из руд, обладает исключительно высокой химической и адсорбционной активностью. Поэтому весьма важно защитить такую поверхность от адсорбции нежелательных веществ и молекул, приводящих к снижению их природной адгезионной активности. Это возможно сделать, если раскрытие алмазов производить в присутствии маслообразных и поверхностно-активных веществ. Маслообразные вещества адсорбируются преимущественно на гидрофобной поверхности. Адсорбируясь на ней, они оказывают одновременное ингибиторное воздействие, не позволяя адсорбироваться другим веществам, способным гидрофилизировать поверхность. С другой стороны, гидрофилизированные участки поверхности частиц, подлежащих извлечению физико-химическими методами обогащения, например липкостной сепарацией, могут быть гидрофобизированы поверхностно-активными веществами в момент их высокой адсорбционной активности при раскрытии этих частиц. Маслообразные вещества, такие как мазут, который широко используется при извлечении алмазов, требуют для своего эффективного технологического воздействия весьма тонкой диспергации. Такая диспергация обеспечивается в условиях применения острого пара или горячего (раскаленного) воздуха при раскрытии алмазов в интенсивном истирающем режиме. Механоактивация поверхности извлекаемых алмазов, инициируемая измельчением в данном режиме, дополняется устойчивой ее гидрофобизацией, что обеспечивает повышение технологических показателей при последующем обогатительном процессе.

Гидрофилизированные участки поверхности частиц, подлежащих извлечению физико-химическими методами обогащения, можно более активно гидрофобизировать поверхностно-активными веществами в момент раскрытия этих частиц в интенсивном режиме измельчения, если повысить адсорбционную способность как поверхностно-активных веществ, так и поверхность частиц, на которой они закрепляются. Это возможно осуществить, проведя электрохимическую обработку используемой при интенсивном измельчении воды (раствора ПАВ) в электролизере непосредственно перед подачей их в измельчительный процесс.

Процесс измельчения материала в центробежных мельницах интенсифицируется при объемном сжатии частиц материала в зоне измельчения и одновременном резком воздействии на них в момент их деформации и разрушения высокотемпературным потоком жидкости, перегретым паром или горячим воздухом. При одновременном усиленном механическом и контрастном температурном воздействии разрушение материала происходит более интенсивно и преимущественно по местам вкраплений минеральных зерен в рудном материале, что способствует лучшему их раскрытию. В известной мельнице [2] это достигается конструктивными элементами для объемного сжатия материала в зоне измельчения и подачи непосредственно в зону измельчения высокотемпературного теплоносителя (горячей воды, перегретого пара, высокотемпературного газового потока).

Пример конкретного выполнения изобретения. Способ переработки материалов реализуется в мельнице для переработки материалов, конструкция которой представлена на фиг. 1-3, где: фиг.1 изображает общий вид мельницы для переработки материалов (фронтальный разрез); фиг. 2 - сечение по линии А-А на фиг. 1; фиг. 3 -устройство для дозированной подачи маслообразных и поверхностно-активных веществ.

Мельница для переработки материалов состоит из вертикально расположенной цилиндрической рабочей камеры 1, соосно размещенного внутри нее подвижного ротора 2, закрепленного на вертикальном валу 3 с нижним приводом, загрузочного 4 и разгрузочного 5 устройств, смонтированных на общей раме 6 и станине 7.

Рабочая камера 1 прочно скреплена с рамой. Внутри по периферийной части рабочей камеры 1 по всей ее высоте закреплены с равными интервалами по окружности футеровочные ребра 8, сужающиеся к нижней своей части для лучшей выгрузки измельченного продукта. По периферии верхней части рабочей камеры 1 размещен кольцевой коллектор 9 для промывных вод с водоподводящим патрубком 10 и с расположенными равномерно между футеровочными ребрами 8 выходными отверстиями 11.

Ротор 2 выполнен в виде пустотелого прямого конуса 12 с футеровочными ребрами 13, расположенными по его образующей с равными интервалами по окружности. Нижний конец вертикального вала 3 и ротор 2 опираются на консоль 14. Пустотелый прямой конус 12 имеет в межреберных впадинах футеровки ротора 2 сквозные каналы 15, соединяющие его внутреннюю полость с зоной измельчения, расположенной непосредственно над и вокруг ротора 2 в рабочей камере 1. Оси сквозных каналов 15 наклонены к основанию пустотелого прямого конуса 12 для предотвращения их забивания частицами измельчаемого материала. Внутри пустотелого прямого конуса 12 по его оси расположены водоподводящий 16 и парогазоподводящий 17 патрубки.

Загрузочное устройство 4 выполнено в виде вертикально расположенного шнека 18 с загрузочной воронкой 19 в верхней своей части, являющихся одновременно непрерывно действующим прижимным приспособлением, обеспечивающим постоянное объемное сжатие частиц материала в зоне измельчения. Корпус шнека 18 и загрузочная воронка 19 прочно закреплены на цилиндрической рабочей камере 1 мельницы и на ее раме 6. Вал шнека 18 нижним своим концом посредством резьбового соединения 20 жестко связан с ротором 2 в вершине конуса 12, а верхним своим концом подвижно закреплен в подшипниковом узле 21, установленном посредством радиально расположенных ребер 22 по оси мельницы внутри загрузочной воронки 19.

Разгрузочное устройство 5 выполнено в виде горизонтально расположенной и закрепленной в основании пустотелого прямого конуса 12 приводной тарели 23, диаметр которой превышает диаметр цилиндрической рабочей камеры 1 мельницы. Нижний торец рабочей камеры 1 образует с верхней поверхностью тарели 23 кольцевой зазор 24, телескопически перекрываемый обечайкой 25 с зубчатым нижним торцем 26, расположенной с внешней стороны рабочей камеры 1 и кинематически связанной с силовыми гидроцилиндрами 27 для возвратно-поступательного перемещения в осевом направлении. Силовые гидроцилиндры 27 шарнирно связаны с опорными элементами 28 и 29.

Над краем тарели 23 концентрично к ней установлено уплотнительное кольцо 30 с эластичной прокладкой 31, предотвращающее просыпание материала с тарели 23. Уплотнительное кольцо 30 и прокладка 31 имеют зазор 32, против которого закреплен касательно к цилиндрической рабочей камере 1 скребок 33, предназначенный для съема измельченного материала с поверхности тарели 23 при ее вращении. Под периферийной частью тарели 23 закреплены на раме 6 течка 34 для приема измельченного материала, расположенная напротив скребка 33, и кольцевой желоб 35 с наклонным днищем для сбора шламов, проходящие через контакт неподвижной эластичной прокладки 31 и подвижной тарели 23.

В нижней части мельницы расположены коническая пара 36 и горизонтальный вал с подшипниковой опорой 37, предназначенные для вращения вертикального вала 3 с ротором 2 и с закрепленной на пустотелом прямом конусе 12 приводной тарелью 23 и в вершине конуса 12 шнека 18. Корпуса подшипникового узла вертикального вала 3 и подшипниковой опоры 37 закреплены на консоли 14 станины 7.

Кольцевой желоб 35 в верхней своей части имеет патрубки 38 для подвода смывной воды.

Водоподводящий патрубок 16 и парогазоподводящий патрубок 17 концентрично проходят через вертикальный вал 3. Для этого вал 3 имеет осевой канал 39. Водоподводящий патрубок 16 жестко скреплен с валом 3 посредством гаек 40 и бурта 41, выполненного заодно с патрубком 16 в верхней его части, и поэтому является подвижным, вращающимся заодно с валом 3. Парогазоподводящий патрубок 17 установлен внутри водоподводящего патрубка 16 с кольцевым зазором 42 и является неподвижным. Нижний конец водоподводящего патрубка 16 через сальниковое уплотнение 43 закреплен с возможностью осевого вращения патрубка 13 в стакане 44. Стакан 44 неподвижно закреплен в основании консоли 14 посредством фланцевого соединения 45 и имеет внутри на уровне нижнего конца водоподводящего патрубка 16 концентрическую полость с водоподводящим штуцером 47. Парогазоподводящий патрубок 17 посредством резьбового соединения 48 и бурта 49, выполненного заодно с патрубком 17 в нижней его части, жестко и плотно закреплен в стакане 44 в осевом его отверстии 50. К нижнему концу парогазоподводящего патрубка 17 прикреплен штуцер 51 для подвода парогазовой смеси.

Большая шестерня конической пары 36 привода мельницы закреплена за вертикальный вал 3 посредством гаек 52. Вертикальный вал 3 установлен в подшипниках 53, размещенных в полости 54 консоли 14. Верхняя часть вертикального вала 3 выполнена заодно с ним в виде диска 55, на котором посредством штифтов 56 закреплен пустотелый прямой конус 12 ротора 2.

На горизонтальном участке пароподводящего патрубка 17 (см. фиг.3) установлено устройство 57 для дозированной подачи маслообразных и поверхностно-активных веществ, закрепленное за консоль 14 с внешней ее стороны (на фиг.1 не показано). Устройство 57 выполнено в виде герметичного сосуда 58 с расположенным внутри него шатунно-кривошипным механизмом 59, имеющим на возвратно-поступательной его части поршень 60 в виде стержня с кольцевыми канавками 61, предназначенными для забора маслообразных и поверхностно-активных веществ из сосуда 58 и переноса их во внутреннюю полость парогазоподводящего патрубка 17. Для этого поршень 60 помещен в цилиндр 62, внутренняя полость которого одним концом сообщена с внутренней полостью герметичного сосуда 58, а другим с внутренней полостью пароподводящего патрубка 17. Для большего вхождения нижней части цилиндра 60 с кольцевыми канавками 81 во внутреннюю полость пароподводящего патрубка 17 цилиндр 60 расположен под углом к этому патрубку. Герметичный сосуд 58 снабжен крышкой 63, плотно прижатой к верхнему его торцу через эластичную прокладку 64 посредством болтовых соединений 65, а также патрубком 66 для залива в него маслообразных и поверхностно-активных веществ. Шатунно-кривошипный механизм 59 имеет диск 67 с приводным валом 68, с уплотнением, проходящим через боковую стенку сосуда 58.

При работе мельницы рабочую камеру 1 через шнек 18 и загрузочную воронку 19 загрузочного устройства 4 заполняют исходным мелкокусковым материалом, подлежащим измельчению. Воду, предварительно обработанную в электролизере, подают в рабочую камеру 1 через выходные отверстия 11 в кольцевом перфорированным коллекторе 9 с водоподводящим патрубком 10. Ротор 2 с закрепленной в основании пустотелого прямого конуса 12 тарелью 23 приводят во вращение через вертикальный вал 3, закрепленный в подшипниках 53 консоли 14, коническую пару 36 и горизонтальный вал с подшипниковой опорой 37. Одновременно в пустотелый прямой конус 12 ротора 2 подают через кольцевой зазор 42 в водоподводящем патрубке 16, концентрическую полость 46 в стакане 44 и штуцер 47 воду либо раствор ПАВ, обработанные в электролизере, а через парогазоподводящий патрубок 17 и штуцер 51 острый (перегретый) пар либо горячий (раскаленный) воздух с предварительно введенными в них через устройство 57 маслообразными и поверхностно- активными веществами, которые через сквозные каналы 15 в пустотелом прямом конусе 12 поступают между футеровочных ребер 13 непосредственно в зону измельчения, расположенную над и вокруг ротора 2, причем в верхнюю ее часть поступает острый (перегретый) пар либо горячий (раскаленный) воздух с маслообразными и поверхностно-активными веществами, а в нижнюю ее часть - вода либо раствор ПАВ. Утечку воды (раствора ПАВ) из стакана 44 предотвращают при этом сальниковым уплотнением 43, установленным на контакте вращающегося водоподводящего патрубка 18 и неподвижного стакана 44.

Дозированное введение маслообразных и поверхностно-активных веществ в парогазоподводящий патрубок 17 посредством устройства 57 производят следующим образом.

Сосуд 58 через патрубок 66 заполняют жидкими маслообразными и поверхностно-активными веществами. При вращении вала 68 и диска 67 шатунно-кривошипный механизм 59 возвратно-поступательно перемещает поршень 60 с кольцевыми канавками 61 в цилиндре 62. При вхождении поршня 60 во внутреннюю полость сосуда 58 маслообразные и поверхностно-активные вещества заполняют канавки 61. Затем при возвратном вхождении поршня 60 во внутреннюю полость парогазоподводящего патрубка 17 маслообразные и поверхностно-активные вещества выходят из канавок 61 и поступают в паровоздушный поток, а вместе с ним в зону деформации и разрушения частиц материала. При этом поршень 60 при своем движении одновременно изолирует высокотемпературную область высокого давления внутри парогазоподводящего патрубка 17 и область с более низкой температурой и давлением в сосуде 58. Количество маслообразных и поверхностно-активных веществ дозируют посредством изменения числа оборотов вала 68, а также сечением кольцевых канавок 61.

При вращении шнека 18 находящийся во внутренней полости рабочей камеры 1 исходный материал подвергается объемному сжатию. При вращении ротора 2 происходит истирание частиц материала друг о друга принудительным полиградиентным перемещением концентрических слоев материала при одновременном резком высокоградиентном температурном воздействии на частицы материала в момент их деформации и разрушения в условиях объемного сжатия материала. Частицы материала перед своим разрушением претерпевают интенсивные механические и высокотемпературные деформации, что интенсифицирует процесс их разрушения. При этом процесс ведется непрерывно. Контрастность высокотемпературного воздействия на измельчаемый материал усиливается поочередным воздействием на разрушаемые частицы материала сначала острым (перегретым) паром либо горячим (раскаленным) воздухом с маслообразными и поверхностно-активными веществами, а затем непосредственным низкотемпературным воздействием холодной воды либо раствора ПАВ. Молекулы ПАВ оказывают расклинивающее действие (эффект П.А. Ребиндера) по микротрещинам, образующимся в деформируемых частицах материала, а также по контакту минеральных вкраплений, способствуя их лучшему раскрытию. Маслообразные вещества, в частности мазут, адсорбируются при этом на гидрофобной поверхности алмазов и, адсорбируясь на ней, оказывают одновременное ингибиторное действие, не позволяя другим веществам, способным гидрофилизировать поверхность, адсорбироваться на этой поверхности. Гидрофилизированные участки поверхности алмазов гидрофобизируются при этом поверхностно-активными веществами в момент их высокой адсорбционной активности при раскрытии. Этому способствует электрохимическая обработка воды (раствора ПАВ) в электролизере непосредственно перед подачей ее в измельчительный процесс.

Наклон осей каналов 15 к основанию пустотелого прямого конуса 12 препятствует их забиванию частицами измельчаемого материала при объемном его сжатии. Нахождение слоя воды в нижней части пустотелого прямого конуса 12 предохраняет диск 55 вертикального вала 3 и подшипники 53 от возможного перегрева, экранируя их от высокотемпературной среды (острого пара, горячего воздуха). Роль теплового экрана выполняет при этом также слой воды (раствора ПАВ), проходящий по кольцевому зазору 42 в водоподводящем патрубке 16.

Разгрузку измельченного материала из рабочей камеры 1 осуществляют при подаче воды в кольцевой перфорированный коллектор 9 через водоподводящий патрубок 10. Выходя через выходные отверстия 11, расположенные между футеровочных ребер 8, из кольцевого перфорированного коллектора 9 и двигаясь вниз по рабочей камере 1, она уносит измельченные частицы материала в нижние его слои. При вращении приводной тарели 23 измельченный материал в виде пульпы выходит из рабочей камеры 1 через щели зубчатого торца 26 обечайки 25 и затем снимается с ее поверхности скребком 33 в течку 34 для приема измельченного материала, установленным напротив зазора 32 в кольце 30 с эластичной прокладкой 31, служащие для предотвращения просыпания материала с тарели 23 при ее вращении. Шламы, прошедшие с тарели 23 под эластичную прокладку, попадают в кольцевой желоб 35 с наклонным днищем, откуда они смываются в течку 34 водой, подаваемой через патрубки 33 для подвода смывной воды. Разгрузка измельченного материала из рабочей камеры 1 мельницы регулируется путем поднятия или опускания обечайки 25 над поверхностью тарели 23 посредством силовых гидроцилиндров 27, работа которых может быть автоматизирована.

Таким образом, предложенное техническое решение по сравнению с прототипом позволит повысить качество подготовки поверхности частиц полезного компонента при непрерывном интенсивном измельчении материала для последующего эффективного их извлечения физико-химическими методами обогащения.

Формула изобретения

1. Способ переработки материалов, включающий подачу материала с водой в кольцеобразную зону измельчения сверху, объемное сжатие материала в зоне измельчения, истирание частиц материала одна о другую принудительным полиградиентным перемещением концентрических слоев материала при одновременном импульсном воздействии на частицы в момент их деформации и разрушения высокотемпературным потоком жидкости, перегретым паром или горячим воздухом, смешение измельченного продукта с холодной водой и удаление пульпы снизу, отличающийся тем, что подачу материала с водой (раствором ПАВ) в кольцеобразную зону измельчения и смешение измельченного продукта с водой осуществляют после предварительной электрохимической обработки подаваемой в процесс измельчения воды (раствора ПАВ) в электролизере.

2. Способ по п. 1, отличающийся тем, что импульсное воздействие на частицы материала высокотемпературным потоком жидкости, перегретым паром или горячим воздухом в момент их деформации и разрушения осуществляют одновременно с подачей маслообразных и поверхностно-активных веществ.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Мельница // 2054967
Изобретение относится к технике измельчения различных материалов и может быть использовано в горнорудной, химической, цементной и других отраслях промышленности
Изобретение относится к технике измельчения материалов и может быть использовано в пищевой, химической и других отраслях промышленности

Изобретение относится к оборудованию для измельчения мягких нерудных материалов, таких как мел, глина, и может быть использовано, например, в промышленности строительных материалов

Изобретение относится к горной промышленности и может быть использовано для измельчения руд черных и цветных металлов и неметаллорудных соединений путем предварительного измельчения и истирания как мокрым, так и сухим способом для получения тонкой и средней крупности помола

Изобретение относится к производству мягких строительных материалов (например, мел, глина) сухим и мокрым способами, конкретнее к технике их измельчения

Изобретение относится к горнорудной промышленности, в частности, к измельчению различных материалов, и может быть использовано при измельчении рудного и нерудного сырья

Изобретение относится к области горнорудной промышленности, в частности к измельчению различных материалов, и может быть использовано при измельчении рудного и нерудного сырья

Изобретение относится к измельчению твердых горных пород, а именно к устройствам истирающего действия, и может быть использовано при переработке минерального сырья, например кимберлитовой руды

Изобретение относится к области измельчения и разделения твердого полезного ископаемого и может быть использовано, например, при обогащении разного вида минерального сырья. Измельчитель-классификатор содержит вращающийся перфорированный барабан 2, установленный на приводных 4 и поддерживающих 5 роликах, и размещенный внутри перфорированного барабана 2 рабочий элемент. Рабочий элемент снабжен индивидуальным приводом и выполнен в виде вала-измельчителя 6 со сменными рабочими рельефными накладками 8, при этом вал-измельчитель относительно внутренней поверхности перфорированного барабана 2 установлен с регулируемым по высоте зазором 7. Вал-измельчитель 6 и перфорированный барабан 2 посредством индивидуальных приводов имеют возможность изменения частоты и направления вращения, а ось вращения вала-измельчителя 6 расположена на вертикальной оси поперечного сечения перфорированного барабана 2. Измельчитель обеспечивает повышенную эффективность разрушения материала при минимальных энергетических затратах. 3 ил.

Изобретение относится к футеровкам барабанных мельниц и может использоваться в горно-обогатительной, строительной, химической и других отраслях промышленности. Футеровка барабанной мельницы состоит из элементов, каждый из которых выполнен из эластомерного материала в виде плиты, имеет верхнюю рабочую поверхность, нижнее основание, боковые поверхности и узел крепления, завулканизованный в массиве плиты. Рабочая поверхность элемента футеровки образована двумя плоскостями, одна из которых горизонтальная, а вторая наклонена к ней под углом в пределах 100-175 градусов. Соотношение горизонтальной и наклонной плоскостей рабочей поверхности по ширине может составлять от 4÷1 до 1÷1. В футеровке обеспечивается возможность придания рабочей поверхности элемента под влиянием мелющей массы формы несимметричной волны, близкой к форме волны естественного износа, и сохранение ее в течение всего периода эксплуатации. 1 з.п. ф-лы, 2 ил.

Мельница // 2566451
Изобретение предназначено для применения в химической промышленности, агропромышленном комплексе, производстве строительных материалов и других отраслях промышленности. Мельница содержит устройства загрузки (1) и выгрузки (2), приводной наклонный барабан (5) и перегрузочное приспособление. На внутренней поверхности барабана размещены спиральные направляющие (6) в виде профилированных полых элементов. В спиральных направляющих выполнены отверстия для выгрузки измельченного материала. Под барабаном размещен наклонный лоток (8). Перегрузочное приспособление состоит из воронки (9) с наклонным патрубком (10). Наклонный патрубок связан с устройством загрузки барабана и снабжен вибратором (12). Изобретение имеет простую конструкцию и обеспечивает высокую эффективность измельчения. 2 ил.

Измельчитель предназначен для применения в агропромышленном комплексе, производстве строительных материалов, в химической и других отраслях промышленности. Измельчитель содержит устройства загрузки (1) и выгрузки (2), приводные цилиндрические барабаны (3, 4) и перегрузочные приспособления (5, 6). На внутренних поверхностях барабанов размещены спиральные направляющие в виде профилированных полых элементов. Перегрузочные приспособления соединяют торцевые части барабанов. К торцам барабанов присоединены конические камеры в виде спиральных направляющих. В зоне устройства загрузки первого барабана и на противоположном торце второго камеры выполнены в виде диффузоров (7). Остальные камеры имеют форму конфузоров (8). Изобретение имеет простую конструкцию и обеспечивает высокое качество измельчения. 3 ил.

Изобретение относится к технике измельчения твердых материалов. Мельница прутковая содержит барабан (1), загрузочную (2) и разгрузочную цапфы (3) и привод. Барабан смонтирован из опорных колец. Между кольцами закреплена цилиндрическая сетчатая поверхность волнообразной формы по периметру. Сетчатая поверхность выполнена из поперечных и продольных прутков. Поперечные прутки выполнены в виде колец волнообразной формы с карманами криволинейной формы. Продольные прутки скручены с одинаковым шагом по винтовой линии диаметров выступов карманов криволинейной формы поперечных прутков. Продольные прутки прикреплены к кольцам поперечных прутков с внутренней стороны ее карманов криволинейной формы. По всей длине цилиндрической сетчатой поверхности волнообразной формы по периметру смонтирована цилиндрическая пружина (4) с круглым сечением. Пружина оборудована устройством для изменения шага витков путем ее растяжения или сжатия. Изобретение увеличивает производительности и повышает качество готовой продукции. 5 ил.
Наверх