Способ определения микроколичеств ацетонитрила в воде

 

Использование: способ предназначен для количественного определения микроколичеств ацетонитрила в воде. Сущность изобретения: способ включает хроматографирование анализируемой пробы и вычисление содержания ацетонитрила. Перед хроматографированием проводят перегонку анализируемой пробы на установке, содержащей дефлегматор длиной 25-30 см. Хроматографированию подвергают первую порция отгона, составляющую 5-7% от исходного объема пробы. Вычисление содержания ацетонитрила производят с учетом коэффициента концентрирования, который предварительно определяют с помощью стандартных растворов ацетонитрила с концентрацией ацетонитрила 0,2-2,0 мг/дм3. 5 табл.

Изобретение относится к области аналитической химии, а именно к способу количественного определения микроколичеств ацетонитрила в воде.

Известен способ определения ацетонитрила, включающий обработку исследуемой пробы едкой щелочью, затем тимолом и гипобромитом, экстрагирование образовавшегося раствора индотимола органическим растворителем и колориметрирование экстракта [1].

Недостатком способа является длительность, многостадийность, недостаточная чувствительность ( 0,4 мг/дм3), отсутствие селективности по отношению к другим нитрилам.

Известен способ определения ацетонитрила по реакции с щелочным пероксидом водорода образованием амидов, последующим превращением последних в соль, где избыток щелочи титруют кислотой [2].

Недостатком способа является мешающее влияние соединений, окисляющихся в условиях анализа до кислоты, недостаточная чувствительность ( 1,0 мг/дм3), длительность анализа.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому является способ определения ацетонитрила методом газожидкостной хроматографии с использованием детектора по ионизации пламени [3], по которому 5-8 мм3 исследуемой пробы вводят микрошприцем в камеру испарителя хроматографа и проводят хроматографирование с использованием колонки длиной 2 м, диаметром 3 мм, заполненной силанизированным хромосорбом (размер зерен 0,18 - 0,25 мм) с нанесенной неподвижной фазой нитрилотрипропионитрилом в количестве 15% в условиях: газ-носитель - азот или гелий, температура испарителя - 190oC, температура колонки - 80oC, скорость газа носителя - 32 см3/мин, детектор пламенно-ионизационный. Расчет содержания компонентов в пробе проводят по площади пика, построив калибровочный график путем анализа стандартных растворов в условиях анализа пробы.

Недостатком способа является недостаточная чувствительность ( 1,0 мг/дм3), что не позволяет использовать его в аналитическом контроле очищенных сточных вод и речной воды, для которых ПДК (предельно допустимая концентрация) составляет 0,7 мг/дм3, а ПДС (предельно допустимый сброс), учитывающий токсическое воздействие в совокупности с другими веществами однонаправленного действия на организм, составляет величину менее 0,7 мг/дм3 (например, для биологически очищенных сточных вод АО "Нижнекамскнефтехим" ПДС = 0,2 мг/дм3).

Сущностью изобретения является способ определения микроколичеств ацетонитрила в воде, включающий хроматографирование анализируемой пробы и вычисление содержания ацетонитрила, отличающийся тем, что предварительно проводят перегонку анализируемой пробы на установке, содержащей дефлегматор длиной 25-30 см, хроматографированию подвергают первую порцию отгона, составляющую 5-7% от исходного объема пробы, а вычисление содержания ацетонитрила производят с учетом коэффициента концентрирования, который предварительно определяют с помощью стандартных растворов с концентрацией ацетонитрила 0,2 - 2,0 мг/дм3 по соотношению значений концентрации ацетонитрила, обнаруженного путем перегонки стандартного раствора и хроматографирования отгона в условиях анализа пробы, и концентрации ацетонитрила в соответствующем стандартном растворе.

В отгоняемый объем исследуемой воды переходит соответственно 75 - 85% ацетонитрила, содержащегося в исходной пробе, что соответствует 15 - 17-кратному увеличению чувствительности метода при допустимой погрешности результатов определения.

Определение 0,2 - 2,0 мг/дм3 ацетонитрила в воде путем предварительного концентрирования отгонкой 5-7% об. исследуемой пробы на установке, обеспечивающей получение воспроизводимых результатов определения, состоящей из круглодонной колбы, дефлегматора длиной 25 - 30 см, холодильника и приемника, последующего хроматографирования отгона и вычисления содержания ацетонитрила с учетом коэффициента концентрирования ацетонитрила, определенного путем перегонки и хроматографирования в аналогичных условиях серии стандартных растворов с концентрацией 0,2 - 2,0 мг/дм3, являются отличительными признаками и не обнаружены в аналогичных технических решениях, позволяют снизить минимально определяемую концентрацию в 15-17 раз, а следовательно, повысить эффективность аналитического контроля объектов окружающей среды.

Установлено, что для обеспечения воспроизводимости результатов анализа решающее значение имеет длина дефлегматора. При длине дефлегматора 25-30 см обеспечивается концентрирование, соответствующее 15100/20 = 75% от максимально возможного уровня концентрирования для условий перегонки, где объем отгона составляет 1/20 часть от взятого объема пробы (15-кратность концентрирования, см. табл. 2) при хорошей воспроизводимости результатов анализа (табл. 3). Использование дефлегматора длиной более 30 см нецелесообразно, так как это приводит к увеличению продолжительности перегонки (анализа).

Наличие отличительных признаков и достигаемого эффекта подтверждают соответствие заявляемого технического решения критериям изобретения: новизна изобретения и изобретательский уровень.

Простoта анализа, экспрессность, высокая чувствительность, возможность осуществления в промышленном масштабе, многочисленность объектов предполагаемого применения заявляемого способа, связанная с загрязнением ацетонитрилом сточных вод многих нефтехимических и химических предприятий (синтетического каучука, мономеров СК, органического стекла, акрилонитрила, красителей, химико-фармацевтических производств, сланцеперерабатывающих заводов и др.), подтверждают соответствие его критерию "промышленная применимость".

Изобретение осуществляется следующим образом: 200 см3 исследуемой воды вносят в круглодонную колбу вместимостью 500 см3. Колбу подсоединяют к установке для перегонки, состоящей из дефлегматора длиной 25 см, холодильника Либиха, алонжа и приемника, представляющего собой мерный цилиндр с ценой деления 0,1 см3, электронагревателя, и отгоняют 100,05 см3 жидкости. После перемешивания 5 мкл отгона с помощью микрошприца вводят в испаритель хроматографа и проводят хроматографирование в известных условиях.

На полученной хроматограмме замеряют площадь пика ацетонитрила. Содержание ацетонитрила (X) (в мг/дм3) рассчитывают по формуле: где H - высота пика, соответствующего ацетонитрилу, в исследуемом растворе (с учетом масштаба), мм; K - калибровочный коэффициент, определенный путем хроматографирования стандартных растворов с концентрацией 2,0 - 4,0 - 6,0 - 8,0 - 10,0 мг/дм3 и обработке результатов по формуле: где Ci - концентрация ацетонитрила в i-м стандартном растворе (2,0 - 4,0 - 6,0, - 8,0 - 10,0 ), мг/дм3; - знак суммы; Hi - высота пика, соответствующего ацетонитрилу в i-м стандартном растворе (с учетом масштаба), мм.

П - коэффициент концентрирования, определенный хроматографированием концентратов, полученных отгонкой 10 см3 из 200 см3 стандартного раствора с концентрацией 0,2 - 0,5 - 1,0 - 1,5 - 2,0 мг/дм3 ацетонитрила в воде и обработке результатов хроматографирования по формуле:
где Ai - концентрация ацетонитрила в i-м стандартном растворе 0,2 - 0,5 - 1,0 - 1,5 - 2,0 мг/дм3;
Xi - концентрация ацетонитрила в i-м отгоне в мг/дм3, определенная хроматографированием отгона и вычислением результата по формуле:
X = HK (4)
Обозначения те же.

Пример 1. Определение калибровочного коэффициента.

Готовят стандартные растворы ацетонитрила в воде с концентрацией 2,0 - 4,0 - 6,0 - 8,0 - 10,0 мг/дм3. Каждый из растворов хроматографируют следующим образом: 5,0 мм3 раствора вводят в испаритель хроматографа с пламенно-ионизационным детектором с колонкой длиной 2 м, диаметром 3 мм, заполненной силанизированным хромосорбом-W с размером зерен 0,18 - 0,25 мм с нанесенной неподвижной фазой нитрилотрипропионитрилом в количестве 15% и проводят хроматографирование в условиях: газ-носитель - азот, температура испарителя - 190oC, температура колонки - 80oC, скорость газа-носителя - 32 см3/мин, время удерживания ацетонитрила - 10 мин. Результаты анализов представлены в табл. 1.

По полученным данным с использованием известной формулы рассчитывают значение коэффициента:

Пример 2. Определение коэффициента концентрирования. Готовят стандартные растворы ацетонитрила в воде с концентрацией 0,2 - 0,5 - 1,0 - 1,5 - 2,0 мг/дм3. Каждый из растворов подвергают концентрированию следующим образом: 200 см3 раствора вносят в круглодонную колбу вместимостью 500 см3. Колбу подсоединяют к перегонной установке, состоящей из дефлегматора длиной 25 см, холодильника Либиха длиной 30 см, алонжа, приемника-мерного цилиндра с ценой деления 0,1 см3 и электронагревателя. Отгоняют 10,0 см3 жидкости (концентрат). Каждый концентрат хроматографируют как описано в примере 1. Результаты измерений представлены в табл. 2.

По полученным данным с использованием известной формулы рассчитывают коэффициент концентрирования:

Пример 3. Анализируют биологически очищенную сточную воду производства, для которой предельно допустимая концентрация сброса (ПДС) по содержанию ацетонитрила составляет "не более 0,2 мг/дм3", заявляемым способом.

200 см3 исследуемой пробы вносят в круглодонную колбу вместимостью 500 см3 и перегоняют 10 см3 жидкости в соответствии с примером 2. 5 мм3 отгона вводят в испаритель хроматографа и хроматографируют как описано в примере 1. Результат анализа: высота пика, соответствующего ацетонитрилу, 180 мм. Содержание ацетонитрила (X) (в мг/дм3) рассчитывают по формуле:

Пример 4. Проведены опыты по выявлению возможности количественного определения малых количеств ацетонитрила путем предварительного концентрирования его с использованием перегонных установок других конструкций. При этом приемлемость той или иной перегонной установки оценивалась по сходимости пяти результатов определения коэффициента концентрирования с использованием одной и той же установки. Определения проводились в соответствии с примером 2. Особенности установки и результаты опытов представлены в табл. 3.

Результаты, представленные в табл. 3, показывают, что отгонкой на установке без дефлегматора (п. 1) или с дефлегматором высотой менее 250 мм (п. 2) не обеспечивается получение стабильных значений коэффициента (кратности) концентрирования, результаты плохо воспроизводятся, что не приемлемо для использования при количественном определении ацетонитрила в объектах окружающей среды. Перегонкой на установке с дефлегматором высотой 250 - 280 мм (п. 3 и 4) обеспечивается получение стабильного и высокого (14,4 - 15,2) коэффициента концентрирования даже при использовании различных режимов нагрева электроплитки, таким образом чувствительность определения повышается в 15 раз при минимальной погрешности определения.

Использование дефлегматора высотой более 300 мм нецелесообразно, так как это приведет к неоправданной громоздкости установки и увеличению продолжительности определения.

Пример 5. С целью установления оптимальных условий получения концентрата определяют коэффициент концентрирования с использованием стандартного раствора с концентрацией ацетонитрила 0,5 мг/дм3 с использованием одной и той же выбранной установки перегонки, но с отбором различных объемов отгона. Приемлемость условий оценивают по сходимости трех значений коэффициента концентрирования, вычисленного для одинаковых объемов отгона. Результаты определений и объемы отгонов представлены в табл. 4.

Из данных таблицы следует, что при объеме отгона, составляющем 5-7,5% объема пробы, достигается хорошая повторяемость коэффициента концентрирования на уровне 15-10 соответственно. Больший объем отгона нецелесообразен из-за низкой кратности концентрирования, меньший - из-за низкой повторяемости результатов.

Примеры 6. С целью определения метрологических характеристик способа проведено 8 определений в стандартном растворе с содержанием ацетонитрила 0,2 мг/дм3, как описано в примере 3 "б". Статистически обработанные результаты измерений при p=0,95 следующие (см. табл. 5).


Формула изобретения

Способ определения микроколичеств ацетонитрила в воде, включающий хроматографирование анализируемой пробы и вычисление содержания ацетонитрила, отличающийся тем, что предварительно проводят перегонку анализируемой пробы на установке, содержащей дефлегматор длиной 25 30 см, хроматографированию подвергают первую порцию отгона, составляющую 5 7% от исходного объема пробы, а вычисление содержания ацетонитрила производят с учетом коэффициента концентрирования, который предварительно определяют с помощью стандартных растворов ацетонитрила с концентрацией ацетонитрила 0,2 2,0 мг/дм3.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к охране окружающей среды, в частности, к охране рыбохозяйственных водоемов
Изобретение относится к аналитической химии, экологии и может быть использовано для диагностики загрязнения сульфидных вод метаболитом ДДТ, 4,4'-дихлордифенилдихлорэтиленом (4,4'-ДДЭ)

Изобретение относится к области газового анализа и может быть использовано, в частности, при экологическом и санитарном контроле воздушной среды

Изобретение относится к газовой хроматографии и может быть использовано для количественного определения (аттестации) отдельных компонентов многокомпонентных смесей произвольного состава

Изобретение относится к способам определения числа активных центров в твердых органических соединениях, в частности в акцепторах ангидридах ароматических кислот, хинонах (хлораниле), нитробензойных кислотах и др

Изобретение относится к методам аналитической химии и может быть использовано в лабораториях, осуществляющих контроль окружающей среды

Изобретение относится к методам анализа газов, содержащих токсичные примеси, с применением сорбентов для поглощения токсичных примесей, и может быть использовано для определения серу- или фторсодержащих фосфорорганических токсичных примесей в газах на предприятиях химической, нефтехимической, газовой и других отраслей промышленности, а также при проведении научных исследований

Изобретение относится к области научного или аналитического приборостроения. Оно также может быть использовано при разработке и создании ряда приборов бытового или специального назначения. Этот способ увеличения концентрации примесей, выделяемых из газовой смеси, может иметь широкий спектр применения, а именно в тех случаях, когда требуется импульсное и динамичное во времени повышение концентрации выбранного вещества, достаточное для проведения измерений. Этот способ может быть применен для анализа воздуха, выдыхаемого больными, при диагностике скрытых заболеваний на начальной стадии. Кроме того, этот способ, объединенный с масс-спектрометром или с каким-либо другим аналитическим прибором, сенсором или детектором, может быть использован для создания селективных и чрезвычайно чувствительных анализаторов с целью определения ядовитых или взрывчатых веществ в воздухе, для детектирования наркотиков, определения присутствия в атмосфере паров ртути, следов метана, малых концентраций диоксина и пр. Способ содержит накопительную емкость с расположенными внутри конструктивными элементами. Через накопительную емкость прокачивается газ с примесью, которая адсорбируется на поверхности накопительной емкости и на поверхностях конструктивных элементов внутри нее. С целью повышения пиковой концентрации десорбированных примесей и снижения их потерь десорбция накопленных примесей производится в результате облучения внутренней поверхности накопительной емкости и поверхностей конструктивных элементов, расположенных внутри накопительной емкости и контактирующих с газовой смесью. Техническим результатом изобретения является резкое увеличение концентрации адсорбированного вещества посредством увеличения количества накопленного вещества на максимально большой поверхности с последующим десорбированием его в объем минимальных размеров. 2 ил.

Изобретение относится к устройству для подготовки образцов и анализа пестицидов в образцах посредством хроматографии. Устройство (10) для подготовки образцов и анализа пестицидов в образцах включает колонку (14) для гидрофильной хроматографии с первым насосом (12) для растворителя с преимущественно низким содержанием воды и/или неполярного растворителя. Также устройство включает обогатительное устройство (22) с твердофазной экстракцией, вторую хроматографическую колонку (28) со вторым насосом (18) для растворителя с преимущественно высоким содержанием воды и/или полярного растворителя, детектор (32). Кроме того, устройство также включает вентильный блок (20, 24) для управления потоками образца и матрицы, выполненный таким образом, что поток образца в первом положении коммутации вентильного блока является подаваемым от колонки (14) для гидрофильной хроматографии к обогатительному устройству (22) с твердофазной экстракцией, а во втором положении коммутации обогащенный в обогатительном устройстве (22) с твердофазной экстракцией образец является подаваемым в обратном направлении от обогатительного устройства (22) с твердофазной экстракцией через вторую хроматографическую колонку (28) к детектору (32). Техническим результатом является повышение достоверности результатов, снижение трудовых затрат и расходов материала. 2 н. и 10 з.п. ф-лы, 2 ил.
Наверх