Катализатор для очистки газов от оксидов азота

 

Изобретение относится к катализаторам защиты окружающей среды от токсичных выбросов оксидов азота и может быть применено в энергетической, химической, металлургической и других отраслях промышленности, имеющих отходящие газы, в которых содержатся оксиды азота. Задача изобретения - разработка катализатора очистки газов от оксидов азота с повышенной механической прочностью, сохранением высокой каталитической активности и частичной или полной заменой токсичного и дорогостоящего ванадиевого компонента на медьсодержащий компонент. Задача решается с помощью катализатора, содержащего носитель, включающий диоксид титана, содержащего по меньшей мере один активный компонент, выбранный из группы соединений ванадия, меди, и тремолит или волластонит или их смесь при следующем содержании компонентов в катализаторе, мас.% содержание соединений V и/или Cu в пересчете на металл: V не более 1; Cu не более 2; Тремолит и/или волластонит 2 - 12; Носитель Остальное. 7 з.п.ф-лы, 1 табл.

Изобретение относится к катализаторам защиты окружающей среды от токсичных выбросов азота и может быть применено в энергетической, химической, металлургической и других отраслях промышленности, имеющих отходящие газы, в которых содержатся оксиды азота.

В качестве активных компонентов катализаторов, применяемых в процессе селективного каталитического восстановления (СКВ) оксидов азота аммиаком, используют оксиды ванадия, меди, железа, марганца, вольфрама, молибдена, никеля, титана и их различные сочетания.

Одной из задач, возникающих при разработке катализаторов СКВ, является повышение срока их службы благодаря созданию каталитических систем с высокой удельной каталитической активностью и повышенной механической прочностью. Проблемой является и подбор каталитических систем с частичной или полной заменой токсичных и дорогостоящих соединений ванадия.

Известен катализатор с повышенной механической прочностью для процесса СКВ, включающий прочный носитель на основе аэросилогеля и огнеупорной глины и поочередно нанесенные слои оксида титана и оксида ванадия [1].

Недостатками этого катализатора являются сложная технология послойного нанесения оксидов титана и ванадия, утилизация сточных вод и невозможность его эксплуатации в газовых выбросах, содержащих большие количества сажи и пыли, за счет абразивного истирания активного слоя катализатора.

Известен катализатор, включающий титансодержащий агент и активные компоненты - оксиды переходных металлов, а также глину с размером частиц 100 - 500 мкм при массовом соотношении титансодержащего агента и глины 4,5 - 1:1 [2].

Недостатком данного катализатора является снижение механической прочности в средах, содержащих влагу за счет набухания глины.

Известен способ повышения механической прочности катализатора путем введения в состав экстрагируемой массы алюмосиликатных, муллитокремнеземистых волокон [3]. В состав катализатора входят оксид титана и один оксид такого элемента, как ванадий, молибден и/или вольфрам и неорганическое волокно, причем промежутки между волокнами заполнены указанным каталитическим составом. Отношение по массе каталитического состава и волокна составляет не менее 3.

Недостатком этого катализатора является разбавление активного компонента и, следовательно, уменьшение активности катализатора, а также ограниченная возможность приготовления катализаторов различной геометрии.

Наиболее близким к изобретению по технической сущности и достигаемому результату является катализатор, содержащий, по крайней мере, 1 - 3 мас.% из группы оксидов Cu, Ni, Co и V, 7 - 8 мас.% WO3, 15 мас.% глины, остальное носитель на основе диоксида титана. Катализатор получают в виде блоков сечением 150 х 150 мм, размером ячейки 7 х 7 мм и толщиной перегородки 1,5 мм. Для упрочнения торцовую часть блоков экранируют стекловидной облицовкой на основе глазури. Дополнительно перед фронтальным слоем катализатора устанавливают металлическую решетку, проштампованную согласно размерам сечения блока катализатора. Удельная поверхность полученного катализатора 10 - 150 м2/г при объеме пор 0,2 - 0,6 см3/г. Степень превращения NOx при 350 - 380oC не превышает 89% [4].

Недостатками указанного катализатора являются большая энергоемкость способа его приготовления и многоступенчатость.

Задача изобретения - разработка катализатора очистки газов от оксидов азота с повышенной механической прочностью с сохранением высокой каталитической активности.

Задача решается с помощью катализатора, содержащего носитель, включающий в свой состав диоксид титана, содержащего по меньшей мере один активный компонент, выбранный из группы соединений ванадия, меди, и тремолит и/или волластонит при следующем содержании компонентов в катализаторе, мас.%: Содержание соединений V и/или Cu в пересчете на металл V - Не более 1 Cu - Не более 2 Тремолит и/или волластонит - 2 - 12 Носитель - Остальное Катализатор имеет следующий состав, мас.%: Содержание соединений V в пересчете на металл V - 0,16-1 Тремолит и/или волластонит - 2 - 12
Носитель - Остальное
Катализатор имеет следующий состав, мас.%:
Содержание соединений Cu в пересчете на металл
Cu - 0,2 - 2
Тремолит и/или волластонит - 2 - 12
Носитель - Остальное
Катализатор имеет следующий состав, мас.%:
Содержание соединений V и Cu - 0,2 - 1
Тремолит и/или волластонит - 2 - 12
Носитель - Остальное
Катализатор может дополнительно содержать оксид вольфрама в количестве не более 10 мас. %, стекловолокно - не более 5 мас.%, глину - не более 10 мас.%.

Для получения катализатора используют термостабильный волокнистый материал - волластонит или тремолит, проявляющий армирующее влияние, что ведет к упрочнению катализатора, и способствующий увеличению доли транспортных макропор с размером более . Волластонит - минерал из класса цепочечных силикатов, формулы [CaSiO3]n, образуется при метаморфизме известняков. Тремолит - минерал из класса цепочечных силикатов группы моноклинных амфиболов, формула [Ca3Mg5[Si4O11](OH)2]n.

Предлагаемый катализатор обладает повышенной механической прочностью и высокой каталитической активностью по сравнению с известным решением.

Процесс приготовления катализаторов включает следующие стадии:
смешение исходных сыпучих компонентов: диоксида титана, волластонита и/или тремолита, с добавлением и без оксида вольфрама, глины и стекловолокна;
добавление водного раствора солей меди и/или ванадия;
длительное перемешивание полученной массы с добавлением органического пластификатора и воды;
экструзия или формование катализаторной массы;
провяливание, сушка, прокаливание.

При приготовлении катализаторов использовали порошки волластонита и тремолита природного происхождения с размером частиц 60 - 100 мкм.

Характеристики катализаторов, результаты испытаний приведены в таблице. Содержание активных компонентов Cu и/или V дано в пересчете на металл, так как по данным физико-химических исследований в катализаторах отсутствуют чистые фазы оксидов или сульфатов меди и ванадия.

В примерах 1 - 4 используют TiO2 (анатазной модификации), полученный парофазным гидролизом хлорида титана, с удельной поверхностью 15 м2/г и объемом пор 0,34 мл/г.

Пример 1. В Z-образном смесителе смешивают 9,38 кг TiO2, 0,5 кг WO3, далее добавляют раствор сульфата ванадила (0,298 кг VOSO43H2O в 1,5 л воды), для создания необходимых формовочных свойств приливают раствор полиэтиленоксида (ПЭО) [0,1 кг ПЭО в 1 л H2O]. Компоненты тщательно перемешивают в течение одного часа до получения однородной пластичной массы. Из полученной массы на лабораторном оборудовании экструдируют модельные мелкоячеистые блоки диаметром 10 мм, размером канала 1,2 х 1, 2 мм, толщиной стенки 0,4 мм, блоки сечения 24 мм, размером канала 6 х 6 мм, толщиной стенки 1,5 мм, кольца с внешним диаметром 6 мм и внутренним диаметром 2 мм для определения механической прочности. На вакуумном шнек-прессе экстрагируют блоки сотовой структуры в форме призмы квадратного сечения 75 х 75 мм или 150 х 150 мм, размером канала 2 х 2 мм, 5,6 х 5,6 мм, толщиной стенки 0,8 - 1,4 мм, длиной блока 150 - 500 мм. Катализатор провяливают, сушат и прокаливают на воздухе с постепенным подъемом температуры до 500oC и принудительной циркуляцией теплоносителя вдоль каналов, выдерживают при 500oC в течение 4 ч.

Пример 2. В Z-образном смесителе смешивают 8,68 кг TiO2, 1 кг WO3, 0,2 кг тремолита, далее добавляют раствор сульфата ванадила (0,298 кг VOSO43H2O в 1,5 л воды), добавляют раствор полиэтиленоксида (0,1 кг ПЭО в 0,96 л H2O). Далее аналогично примеру 1.

Пример 3. В Z-образном смесителе смешивают 8,58 кг TiO2 0,1 кг WO3, 1,2 кг тремолита, добавляют раствор сульфата ванадила (2,298 кг VOSO43H2O в 1,5 л воды), добавляют раствор полиэтиленоксида (0,1 кг ПЭО в 0,96 л H2O). Далее аналогично примеру 1.

Пример 4. В Z-образном смесителе смешивают 8,21 кг TiO2, 0,45 кг тремолита, 0,18 кг волластонита, добавляют раствор сульфата ванадила (0,383 кг VOSO43H2O в 1,5 л воды), добавляют раствор полиэтиленоксида (0,09 кг в 0,74 л H2O). Далее аналогично примеру 1.

Пример 5. Для приготовления катализатора использовали носитель, содержащий в основном TiO2 (анатаз), полученный методом гидролиза сульфата титанила, с удельной поверхностью 132 м2/г и объемом пор 0,42 мл/г.

В Z-образном смесителе смешивают 8,74 кг TiO2, 1 кг волластонита, добавляют раствор нитрата меди (0,759 кг Cu(NO3)23H2O), добавляют раствор полиэтиленоксида (0,1 кг ПЭО в 1,3 л H2O). Далее аналогично примеру 1.

В примерах 6 - 7, 9, 10 используют носитель, содержащий в основном TiO2 (анатаз), полученный гидролизом хлорида титана, с удельной поверхностью 190 - 200 м2/г, объемом пор 0,5 - 0,6 мл/г, различным содержанием V в качестве примеси. Для приготовления катализаторов в примерах 8, 11 используют носитель, содержащий в основном TiO2 (анатаз), полученный методом гидролиза сульфата титанила, с удельной поверхностью 74 м2/г и объемом пор 0,36 мл/г.

Пример 6. В Z-образном смесителе смешивают 8,83 кг носителя на основе TiO2 с содержанием ванадия 0,34 мас.%, 0,9 кг тремолита, добавляют раствор сульфата меди (0,427 кг CuSO45H2O в 2 л H2O), добавляют раствор полиэтиленоксида (0,1 кг ПЭО в 1,8 л H2O). Далее аналогично примеру 1.

Пример 7. В Z-образном смесителе смешивают 8,1 кг носителя на основе TiO2 с содержанием ванадия 0,86 мас.%, 1 кг оксида вольфрама, 0,9 кг тремолита, добавляют раствор полиэтиленоксида (0,1 кг ПЭО в 3,6 л H2O). Далее аналогично примеру 1.

Пример 8. В Z-образном смесителе смешивают 7,96 кг носителя на основе TiO2 1 кг вольфрама, 0,9 кг тремолита, добавляют раствор нитрата меди (0,416 кг Cu(NO3)23H2O в 1,3 л H2O), добавляют раствор плиэтиленоксида (0,1 кг ПЭО в 1 л H2O). Далее аналогично примеру 1.

Пример 9. В Z-образном смесителе смешивают 8,05 кг носителя на основе TiO2 с содержанием ванадия 0,37 мас.%, 0,5 кг тремолита, 1 кг глины, приливают раствор сульфата меди (0,699 CuSO45H2O в 2,5 л H2O), добавляют раствор полиэтиленоксида (0,1 кг ПЭО в 1 л H2O). Далее аналогично примеру 1.

Пример 10. В Z-образном смесителе смешивают 7,25 кг носителя на основе TiO2 с содержанием ванадия 0,22 мас.%, 1 кг оксида вольфрама, 0,5 кг термолита, 0,7 кг глины, 0,5 кг мулито-кремнеземистого волокна, добавляя раствор сульфата меди (0,078 кг CuSO45H2O в 2,5 л H2O). Далее аналогично примеру 1.

Пример 11. В Z-образном смесителе смешивают 8,08 кг носителя на основе TiO2, 0,5 кг тремолита, 0,7 кг глины, 0,5 кг мулито-кремнеземистого волокна, добавляют раствор сульфата меди (0,350 кг CuSO45H2O в 1 л H2O), добавляют раствор полиэтиленоксида (0,1 кг ПЭО в 1,5 л H2O). Далее аналогично примеру 1.

Пример 12. D Z-образном смесителе смешивают 9,07 кг носителя на основе TiO2, 0,9 кг тремолита, добавляя раствор сульфата ванадила (0,067 кг VOSO43H2O в 1,5 л воды), добавляют раствор полиэтиленоксида (0,1 кг в 1 л H2O). Далее аналогично примеру 1.

Пример 13. В Z-образаном смесителе смешивают 9,05 кг носителя на основе TiO2, 0,9 кг тремолита, добавляют раствор сульфата меди (0,078 кг CuSO45H2O в 1,1 л H2O), добавляют раствор полиэтиленоксида (0,1 кг ПЭО в 1 л H2O). Далее аналогично примеру 1.

Пример 14 (по прототипу). Одновременно смешивают катализаторные компоненты: 2 вес. ч. метаванадата аммония, 8 мас. ч. паравольфрамата аммония, 100 мас. ч. оксида титана, 15 мас. ч. глины, 2 мас. ч. полиэтиленоксида, 20 мас. ч. полиэтиленгликоля и 50 мас. частей воды. Далее аналогично примеру 1.

Каталитические свойства образцов катализатора изучают на проточной установке с использованием газовой смеси состава NOx - 0,05 об.%, NH3) - 0,05 об. %, O2 - 0,5 об.%. Объемная скорость подачи газа равняется 27000 ч-1. Анализ газовой смеси осуществляют хроматографическим методом. Степень превращения оксида азота определяется по следующей формуле:
.

Испытания катализатора проводят в интервале температур 225 - 400oC.

Для определения механической прочности массу экструдируют в виде колец высокой, равной внешнему диаметру, которые затем подвергаются сжатию на раздавливание в поперечном направлении. Сущность метода заключается в измерении усилий разрушения кольца между двумя параллельными пластинами. Величину прочности катализатора выражают в килограммах на квадратный сантиметр и рассчитывают по формуле
,
где
N - показания индикатора прибора в делениях;
A - калибровочный коэффициент, кг/дел;
S - площадь поперечного сечения кольца катализатора, см2.

Пористую структуру определяли методом ртутной порометрии на приборе Porosiger-9300.

Как следует из приведенных примеров, оптимальное содержание тремолита и/или волластонита находится в пределах 2 - 12 мас.% (примеры 1-3). Содержание тремолита и/или волластонита менее 2 мас.% недостаточно для достижения высокой механической прочности. Увеличение содержания более 12 мас.% существенным образом ухудшает пластические свойства формуемой массы, введение тремолита и/или волластонита в катализаторную массу обеспечивает ее высокие формовочные свойства и высокую механическую прочность катализатора. Это позволяет получать катализатор без использования стекловолокна, глины и дорогих органических пластификаторов (пример 5). Вместе с тем, применение тремолита и волластонита увеличивает долю транспортных макропор (более с сохранением высокой механической прочности (пр. 2).

Возможно приготовление активного прочного катализатора с малым содержанием активного компонента (примеры 10, 13 и 14) и частичная или полная замена токсичных дорогостоящих соединений ванадия на медьсодержащие соединения (примеры 4, 5, 7, 9 и 10).

Таким образом, предлагаемое изобретение может найти применение в энергетической, химической, металлургической и других отраслях промышленности, имеющих отходящие газы, в которых сдержатся оксиды азота.


Формула изобретения

1. Катализатор для очистки газов от оксидов азота на основе носителя, включающего диоксид титана, содержащий по меньшей мере один активный компонент, выбранный из группы соединений ванадия, меди, отличающийся тем, что он дополнительно содержит тремолит и/или волластонит при следующем содержании компонентов в катализаторе, мас.%:
Содержание соединений V и/или Cu в пересчета на металл V - Не более 1
Cu - Не более 2
Тремолит и/или волластонит - 2,0 - 12,0
Носитель - Остальное
2. Катализатор по п.1, отличающийся тем, что содержание компонентов составляет, мас.%:
Содержание соединений V в пересчете на металл V - 0,16 - 1,0
Тремолит и/или волластонит - 2,0 - 12,0
Носитель - Остальное
3. Катализатор по п.1, отличающийся тем, что содержание компонентов составляет, мас.%:
Содержание соединений Cu в пересчете на металл Cu - 0,2 - 2,0
Тремолит и/или волластонит - 2,0 - 12,0
Носитель - Остальное
4. Катализатор по п.1, отличающийся тем, что содержание компонентов составляет, мас.%:
Содержание соединений V и Cu в пересчете на металл V - 0,16 - 0,5
Cu - 0,2 - 1,0
Тремолит и/или волластонит - 2,0 - 12,0
Носитель - Остальное
5. Катализатор по пп.1 - 4, отличающийся тем, что дополнительно содержит оксид вольфрама в количестве не более 10 мас.%.

6. Катализатор по пп.1 - 5, отличающийся тем, что дополнительно содержит стекловолокно в количестве не более 5 мас.%.

7. Катализатор по пп.1 - 6, отличающийся тем, что дополнительно содержит глину в количестве не более 10 мас.%.

8. Катализатор по пп.1 - 7, отличающийся тем, что доля макропор с размером более 10000 составляет не менее 23%.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к усовершенствованному способу получения анилина гидрированием нитробензола и может быть использовано в производстве красителей, а также в нефтехимической промышленности для гидрирования нитросоединений в первичные амины, применяемые в производстве капролактама

Изобретение относится к усовершенствованному способу получения анилина гидрированием нитробензола в паровой фазе и может быть использовано в производстве красителей, а также в нефтехимической промышленности для гидрирования нитросоединений в первичные амины, применяемые в производстве капролактама

Изобретение относится к области катализа, в частности может быть использовано для очистки ымовых газов ТЭС от SO2

Изобретение относится к способам получения катализаторов для очистки отходящих промышленных газов от сернистых соединений, в частности, для окисления сероводорода и органических соединений серы в двуокись серы, содержащихся в хвостовых газах процесса Клауса

Изобретение относится к каталитической химии, в частности к катализатору для окисления диоксида серы

Изобретение относится к способу получения пирролидина и его производных дегидратационной циклизацией при повьшенной температуре 1,4-бутандиола и аммиака в присутствии гранулированного гетерогенного катализатора

Изобретение относится к получению катализатора, содержащего медь, который может быть использован в процессах жидкофазного дегидрирования одно- и многоатомных спиртов алифатического и алициклического рядов

Изобретение относится к способам приготовления катализаторов, в частности медномагниевых катализаторов, для очистки олефинов и может быть использовано в химической и нефтехимической промышленности

Изобретение относится к производству гетерогенных катализаторов жидкофазного окисления сернистых соединений в газовых выбросах и сточных водах и может быть использовано в нефтеперерабатывающей, нефтехимической, газовой, целлюлозно-бумажной и химической отраслях промышленности

Изобретение относится к химической технологии, в частности к способам получения водорода путем каталитической конверсии оксида углерода, а также к составам и способам получения катализаторов для этого процесса

Изобретение относится к способу приготовления оксидных катализаторов глубокого окисления органических веществ в паровой фазе кислородом воздуха, в частности для глубокой очистки отходящих газов от паров органических соединений и для использования в каталитических источниках тепла, работающих на бензине, керосине, дизельном топливе, сжиженном газе и т.п

Изобретение относится к восстановленным каталитическим композициям и способам получения восстановленных медьсодержащих катализаторов и может быть использовано в процессе каталитической гидрогенизации в паровой форме органических кислородсодержащих соединений, в частности, для гидрогенизации сложных эфиров

Изобретение относится к области приготовления катализаторов для гидрирования растительных масел и жиров

Изобретение относится к области очистки газов от вредных примесей и может быть использовано для очистки газовых смесей от оксида углерода в системах коллективной и индивидуальной защиты органов дыхания, очистки выбросов промышленных предприятий, очистки выхлопных газов двигателей внутреннего сгорания, а также для других индустриальных и природоохранных целей
Наверх