Тиристорный регулятор постоянного напряжения

 

Изобретение относится к преобразовательной технике и предназначено для питания активно-индуктивной нагрузки регулируемым постоянным напряжением. Целью изобретения является повышение надежности регулятора за счет исключения прохождения зарядного тока через его главный тиристор без использования дополнительного источника подзаряда коммутирующего конденсатора и обеспечения отключения главного тиристора при его включении на короткое замыкание в нагрузке. Указанная цель достигается за счет образования последовательной цепочки из первого разделительного тиристора, дросселя, коммутирующего конденсатора и второго разделительного тиристора, подсоединенной параллельно источнику постоянного напряжения, при этом параллельно дросселю и коммутирующему конденсатору подключен тиристор перезаряда. Последовательная цепочка из первого разделительного тиристора, дросселя и коммутирующего конденсатора подключена параллельно главному тиристору. 2 ил.

Изобретение относится к преобразовательной технике и предназначено для питания активно-индуктивной нагрузки регулируемым постоянным напряжением.

Изобретение позволяет эффективнее использовать тиристоры в схемах преобразователей постоянного напряжения, где применение других полупроводниковых приборов (например, транзисторов) затруднено по техническим или экономическим причинам.

В качестве аналогов выбираем схему [1], предназначенную для коммутации группы управляемых вентилей, и схему [2] нереверсивного тиристорного широтно-импульсного преобразователя (ШИП) постоянного напряжения.

Схема содержит цепочку из последовательно соединенных коммутирующего конденсатора и двух управляемых ключей (один из них полностью управляемый) для подключения к положительному и отрицательному полюсам основного силового токоведущего контура. Коммутирующий конденсатор подключен с одной стороны к источнику подзаряда и через диоды к вторичной обмотке дросселя (первичная обмотка упомянутого дросселя включена непосредственно в силовой токоведущий контур), с другой стороны через вспомогательные управляемые вентили (тиристоры) к главным тиристорам.

К недостаткам вышеупомянутой схемы относится использование полностью управляемого ключа, который после отключения главного тиристора вынужден отключать ток нагрузки, что ведет к возникновению перенапряжения на дросселе и, как следствие, необходимости дополнительных схемных решений для снятия этих перенапряжений. Кроме того, источник подзаряда коммутирующего конденсатора вынужден заряжать (причем заряд апериодический) практически разряженный коммутирующий конденсатор, что ведет к значительному снижению КПД всей установки.

Схема-прототип [2] содержит главный тиристор, шунтированный обратным диодом, параллельно которому подсоединена цепочка из тиристора, дросселя и коммутирующего конденсатора, причем тиристор цепочки образует с другим дополнительным тиристором последовательную цепочку, подключенную параллельно источнику постоянного напряжения.

Недостатком схемы является прохождение импульсного зарядного тока коммутирующего конденсатора через главный тиристор, что снижает его надежность или предъявляет дополнительные требования к нему. Кроме того, невозможно отключить главный тиристор при его включении на короткое замыкание в нагрузке.

Целью изобретения является повышение надежности регулятора за счет исключения зарядного тока через главный тиристор регулятора без использования дополнительного источника подзаряда коммутирующего конденсатора и обеспечения отключения главного тиристора при его включении на короткое замыкание в нагрузке.

Указанная цель достигается за счет образования последовательной цепочки из первого разделительного тиристора, дросселя, коммутирующего конденсатора и второго разделительного тиристора, подсоединенной параллельно источнику постоянного напряжения, при этом параллельно дросселю и коммутирующему конденсатору подключен тиристор перезаряда. Последовательная цепочка из первого разделительного тиристора, дросселя и коммутирующего конденсатора подключена параллельно главному тиристору.

Применение изобретения позволит получить следующие преимущества: исключение прохождения импульсного тока заряда коммутирующего конденсатора через главный тиристор, возможность отключения главного тиристора при его включении на к.з. в нагрузке, снижение коммутационных потерь за счет колебательного характера процесса перезарядка коммутирующего конденсатора, отсутствие специального (дополнительного) источника заряда коммутирующего конденсатора, отсутствие накопления энергии в коммутирующем конденсаторе, компенсация потерь в контуре коммутации осуществляется источником постоянного напряжения.

На фиг. 1 представлена схема тиристорного регулятора постоянного напряжения; на фиг. 2 представлен вариант управления группой тиристорных регуляторов.

Основной токоведущий контур регулятора образуется от плюса источника постоянного напряжения к аноду главного тиристора 1, который шунтирован обратным диодом 2, через нагрузку 3, шунтированную обратным диодом, к минусу источника постоянного напряжения. Параллельно источнику постоянного напряжения подключена коммутирующая цепочка, состоящая из последовательно соединенных разделительного тиристора 4, присоединенного анодом к плюсу источника постоянного напряжения, дросселя 5, коммутирующего конденсатора 6 и другого разделительного тиристора 7, присоединенного катодом к минусу источника постоянного напряжения. Параллельно дросселю 5 и коммутирующему конденсатору 6 подключен тиристор перезаряда 8, анодом соединенный с катодом разделительного тиристора 4. Последовательная цепочка из разделительного тиристора 4, дросселя 5 и коммутирующего конденсатора 6 подключена параллельно главному тиристору 1.

На фиг. 2 подключение последовательной цепочки 4-5-6 к главным тиристорам осуществляется через тиристоры, число которых соответствует числу главных тиристоров.

Принцип работы схемы заключается в следующем. Начальное напряжение (показано на фиг. 1 знаками плюс и минус без скобок) на коммутирующем конденсаторе 6 формируется в момент включения разделительных тиристоров 4 и 7 и определяется величиной напряжения источника постоянного напряжения. После этого включается тиристор перезаряда 8. Происходит колебательный перезаряд коммутирующего конденсатора 6 в контуре перезаряда: 6-5-8-6. По окончании процесса перезаряда коммутирующего конденсатора 6 тиристор перезаряда 8 закрывается. Открывается разделительный тиристор 4. Происходит колебательный перезаряд коммутирующего конденсатора 6 в контуре: 6-1(2)-4-5-6 до полярности, указанной без скобок. В процессе перезаряда коммутирующего конденсатора 6 происходит отключение главного тиристора 1. Как только напряжение на коммутирующем конденсаторе 6 превысит напряжение источника постоянного напряжения, разделительный тиристор 4 закрывается и процесс коммутации заканчивается. Таким образом, начальное напряжение на коммутирующем конденсаторе 6 восстанавливается за счет источника постоянного напряжения, а для ускорения восстановления начального напряжения на коммутирующем конденсаторе можно после отключения главного тиристора 1 включить разделительный тиристор 7.

После окончания процесса коммутации включается тиристор перезаряда 8, напряжение на коммутирующем конденсаторе 6 устанавливается со знаками, показанными на фиг. 1 в скобках.

Формула изобретения

Тиристорный регулятор постоянного напряжения, содержащий главный тиристор, шунтированный обратным диодом, включенный между первым зажимом источника напряжения и нагрузкой, соединенной свободным выводом с вторым зажимом источника напряжения, цепочку из последовательно соединенных первого разделительного тиристора, дросселя и коммутирующего конденсатора, подключенную параллельно главному тиристору, и второй разделительный тиристор, отличающийся тем, что в него введен тиристор перезаряда, причем второй разделительный тиристор включен между общей точкой главного тиристора и нагрузки и вторым зажимом источника напряжения, а тиристор перезаряда включен параллельно цепи из дросселя и коммутирующего конденсатора, при этом все тиристоры включены согласно напряжению источника питания.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к преобразовательной технике, в частности к преобразователям (регуляторам) постоянного напряжения в постоянное, например, регуляторах (стабилизаторах) скорости двигателя постоянного тока

Изобретение относится к области преобразователей постоянного напряжения и предназначено для регулирования тока в нагрузке, например в регуляторах напряжения (тока) генератора постоянного тока

Изобретение относится к преобразовательной технике и может быть использовано на электрическом подвижном составе, содержащем, в частности, тяговые аккумуляторные батареи

Изобретение относится к мощной импульсной технике, а именно к генераторам высоковольтных импульсов с емкостным накопителем энергии, и может быть использовано в сильноточных импульсно-периодических ускорителях электронов и другой электрофизической аппаратуры

Изобретение относится к области электротехники и может быть использовано для регулирования напряжения на нагрузках потребителей путем широтно-импульсной модуляции протекающих в них токов

Изобретение относится к области электротехнике и может быть использовано для управления быстродействующими сетевыми трансформаторными источниками питания с улучшенными динамическими свойствами. Технический результат заключается в улучшении динамических свойств импульсного источника питания на основе однотактного сдвоенного обратноходового преобразователя. Для этого заявленное устройство содержит дополнительно релейный стабилизатор магнитного состояния сердечника индуктивного элемента и логический элемент ИЛИ, при этом вход одного ключевого элемента соединяется с выходом релейного стабилизатора магнитного состояния, а вход другого ключевого элемента - с выходом элемента ИЛИ, входы которого соединяются с выходами релейного стабилизатора напряжения и релейного стабилизатора магнитного состояния. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области электротехники и может быть использовано в системах электрооборудования постоянного тока, например, для электровозов постоянного тока напряжением 3 кВ для питания от контактной сети с повышенным напряжением (12-24 кВ и т.д.). Технический результат - расширение функциональных возможностей и увеличение предельной мощности нагрузки. Высоковольтный преобразователь постоянного напряжения с отношением величины высокого напряжения к величине низкого напряжения, равным N, где N - целое число, содержит общий последовательный конденсаторный делитель напряжения из N конденсаторов, L листов идентичных преобразовательных структур, токовый делитель на L выходов, нагрузку. Каждый лист преобразовательной структуры состоит из диодно-транзисторной цепочки из 2N последовательно соединенных диодов, шунтированных встречно-параллельными транзисторами, и конденсаторно-реакторной цепочки из последовательно соединенных N-1 ветвей с последовательно включенными реактором и конденсатором в каждой ветви. Упомянутые цепочки соединены так, как указано в материалах заявки. Нагрузка подсоединена параллельно первому конденсатору конденсаторного делителя напряжения, оконечный вывод которого образует второй вход преобразователя, общий с одним из выводов нагрузки. Преобразователь может работать как понижающий, так и повышающий напряжение в число раз. 2 ил.

Изобретение относится к системам электропитания, в частности электрическим преобразователям постоянного напряжения в постоянное напряжение заданного уровня, ограниченного верхним уровнем напряжения источника питания, и может быть использовано для электроснабжения активной нагрузки с возможностью рекуперации энергии от активной нагрузки в источник питания для его подзарядки в долевых режимах работы. Технический результат заключается в регулировании потока рекуперируемой энергии. Для этого заявленное устройство снабжено тремя дополнительными диодами и одним транзистором, эммитер которого соединен с катодом первого и анодом второго дополнительных диодов и вторым выводом токоограничивающего дросселя, коллектор транзистора соединен с катодом второго диода и с положительным выходным зажимом, анод первого диода подключен к общему узлу, соединяющему отрицательный входной и выходной зажим, а анод третьего диода соединен с первым выводом токоограничивающего дросселя, а его катод с положительным выводом входного зажима. Изменяя скважность работы транзисторов, можно осуществлять изменение или стабилизацию уровня выходного напряжения относительно входного, а также осуществлять регулирование тока заряда источника питания от энергии накопленной активной нагрузкой. 1 ил.

Изобретение относится к сильнотоковой импульсной технике и может быть использовано в качестве вторичного источника электрической мощности для питания нагрузок. Согласно изобретению, через последовательно включенные индуктивный накопитель энергии, первичный источник питания и коммутатор электрической цепи пропускают ток накачки индуктивного накопителя энергии и после достижения током накачки заданного значения размыкают общую цепь коммутатором, а энергию импульса экстратока размыкания выводят в нагрузку, причем для увеличения отношения энергии экстратока размыкания к энергии тока накачки первичным источником питания выполняют электрическую цепь, содержащую активное сопротивление и индуктивность накопителя с такими значениями номиналов, при которых длительность тока накачки меньше постоянной времени индуктивного накопителя на заданную величину. Технический результат - повышение эффективности. 3 ил.

Изобретение относится к преобразовательной технике. Способ управления ключевыми преобразователями постоянного напряжения в постоянное, содержащими индуктивный элемент в выходном фильтре или в индуктивном накопителе энергии. К традиционным режимам работы преобразователя: увеличению и уменьшению энергии в индуктивном элементе, добавляются два дополнительных режима - хранение верхнего уровня накопленной энергии и хранение нижнего уровня, в течение которых запас энергии в индуктивном элементе не меняется. Технический результат - устранение выбросов и провалов выходного напряжения при быстром выходе на режим и при скачкообразном изменении параметров нагрузки. 5ил.

Изобретение относится к области электротехники и может быть использовано в источниках вторичного электропитания в качестве преобразователя постоянного напряжения в постоянное. Техническим результатом является увеличение надежности и повышение коэффициента полезного действия. Двухтактный обратноходовой преобразователь постоянного напряжения в постоянное содержит первичную обмотку первого трансформатора, конец которой соединен со стоком первого МОП-транзистора с n-каналом и с встроенным диодом, исток которого соединен с отрицательным полюсом входного напряжения, а затвор которого является входом для управляющего сигнала Uупр1; начало первичной обмотки второго трансформатора соединено с истоком второго МОП-транзистора с n-каналом и с встроенным диодом, сток которого соединен с положительным полюсом входного напряжения, а затвор является входом для управляющего сигнала Uупр2. Один вывод накопительного конденсатора соединен между концом первичной обмотки первого трансформатора и стоком первого МОП-транзистора с n-каналом и с встроенным диодом, второй вывод которого соединен между началом первичной обмотки второго трансформатора и истоком второго МОП-транзистора с n-каналом и с встроенным диодом. Начало вторичной обмотки первого трансформатора соединено с отрицательным выводом нагрузки, конец которой соединен с анодом первого выпрямительного диода, катод которого соединен с положительными выводами нагрузки, выходного конденсатора, отрицательный вывод которого соединен с отрицательным выводом нагрузки. Начало вторичной обмотки второго трансформатора соединено с отрицательным выводом нагрузки, конец которой соединен с анодом второго выпрямительного диода, катод которого соединен с положительным выводом нагрузки. 2 ил.
Наверх