Модулятор

 

Использование: оптическая техника, система регулирования и стабилизации интенсивности светового излучения. Сущность изобретения: работа устройства основана на изменении интенсивности света на выходе волноводного канала, имплантированном в ниобате лития, при изменении управляющего напряжения на его электродах. При этом каждый волноводный канал представляет собой электрооптическую систему, использующую электрооптический эффект в ниобате лития, т. е. возникновение оптической анизотропии у прозрачного изотропного диэлектрика при помещении его во внешнее электрическое поле. При подаче управляющего напряжения между контактами подается напряжение на соответствующие электроды, что приводит к выполнению условий полного внутреннего отражения в волноводном канале. При этом на выходе волноводного канала получаем световой поток, пропорциональный световому потоку на его входе. Коэффициент пропорциональности зависит от значения приложенного напряжения между управляющими электродами. За счет выбора кристаллов с различными срезами относительно оптической оси получаем ряд волноводных каналов с различной зависимостью относительной яркости на выходе каждого волноводного канала от напряжения. Подавая управляющие напряжения на соответствующие волноводные каналы с помощью коммутатора, обеспечиваем большой динамический диапазон зависимости относительной яркости на выходе модулятора от приложенного напряжения. 3 ил.

Изобретение относится к оптической технике, а именно к системам регулирования и стабилизации интенсивности светового излучения, и может быть использовано для создания оптической аппаратуры различного назначения.

Известен модулятор, содержащий сегнетоэлектрический кристалл, поляризаторы, управляющие электроды.

Однако модулятор имеет низкие функциональные возможности, заключающиеся в малом диапазоне управляющих напряжений.

Наиболее близким к предлагаемому устройству является модулятор, содержащий электрооптическую ячейку, первый и второй контакты для подачи управляющего напряжения, поляризатор.

Недостатком известного устройства являются низкие функциональные возможности, заключающиеся в малом диапазоне управляющих напряжений при их значении свыше 1 кВ.

Целью изобретения является расширение диапазона управляющих напряжений.

Поставленная цель достигается тем, что предлагается модулятор, содержащий электрооптическую ячейку, первый и второй контакты для подачи управляющего напряжения, в котором модулятор выполнен в виде K 2 волноводных каналов, выполненных в K 2 пластинах из ниобата лития LiNbO3, при этом модуляция света осуществляется за счет электрооптического эффекта в ниобате лития путем подачи управляющих напряжений, для чего первый и второй управляющий электроды, нанесенные на противоположные грани каждого волноводного канала, подключены к соответствующему контакту для подачи управляющего напряжения и к общей шине устройства, первый и второй соединители, первые и вторые волоконно-оптические кабели, оптически плотные переходы, расположенные на входах и выходах волноводных каналов, первый соединитель, вход которого является входом для подачи светового потока с равномерным распределением, через первые волоконно-оптические кабели и через оптически плотные переходы подключен к входам волноводных каналов, входы которых через оптически плотные переходы и вторые волоконно-оптические кабели подключены к второму соединителю, вход которого является выходом модулятора.

На фиг. 1 изображен модулятор; на фиг. 2 - волноводный канал, на фиг. 3 - зависимости относительной яркости света на выходе волноводного канала от напряжения на управляющих электродах для волноводных каналов, выполненных в пластинах из ниобата лития.

Устройство (фиг. 1) содержит пластины из ниобата лития 1.1 - 1.K, в которых выполнены волноводные каналы 2 с входами 3, выходами 4, управляющими электродами 5, 6, первые 7 и вторые 8 контакты для подачи управляющих напряжений на первые и вторые управляющие электроды, (K - 1) непрозрачных пластин 8.1 - 8 (K - 1), коммутатор 9 с выходами 10.1 - 10.K, входами 11.1 - 11.M (M 1) для подачи управляющих напряжений, 12.1 - 12.P P 1 входов для подачи логических напряжений, оптически плотные переходы 13, первые волоконно-оптические кабели 14.1 - 14.K, вторые волоконно-оптические кабели 15.1 - 15.K, первый соединитель 16, второй соединитель 17.

Первый соединитель 16 подключен через первые волоконно-оптические кабели 14, через оптически плотные переходы 13 к входам 3 волноводных каналов 2, входы которых через оптически плотные переходы 4', через вторые волоконно-оптические кабели 15 подключены к второму соединителю 17.

На фиг. 2 показан волноводный канал, выполненный в пластине из ниобата лития 1. Управляющие электроды 5, 6 нанесены на противоположные грани волноводного канала и подключены соответственно к контакту 7 для подачи управляющего напряжения к общей шине устройства.

На фиг. 3 приведено семейство кривых зависимости отношения относительной яркости света на выходе волноводного канала от поданного управляющего напряжения на волноводных каналах, выполненных в пластинах из ниобата лития с различными оптическими свойствами 18.1 - 18.K.

Устройство работает следующим образом. Волноводные каналы 2 выполнены в пластинах 1.1 - 1.K из ниобата лития, представляют собой электрооптическую систему, использующую электрооптический эффект, т.е. возникновение оптической анизотропии у прозрачного изотропного твердого диэлектрика при помещении его во внешнее электрическое поле. При воздействии однородного электрического поля, прикладываемого между управляющими электродами 5 и 6, диэлектрик поляризуется и приобретает оптические свойства одноосного кристалла, оптическая ось которого совпадает по направлению с вектором E напряженности поля управляющего сигнала.

При этом за счет эффекта полного внутреннего отражения света на выходе волноводного канала получаем световой поток с малым коэффициентом затухания. В основу работы волноводного канала положено каналирование светового пучка в тонких диэлектрических структурах и пленках.

В режиме отсутствия управляющего напряжения на гранях волноводного канала 2 (полосковых волноводов) свет в волноводном канале не распространяется из-за сдвигов по фазе на 90o плоскости поляризации в соответствующем волноводном канале 2 и вектора E напряженности электрического поля управляющего сигнала.

Выбирая различные срезы кристалла ниобата лития относительно оптической оси, т.е. кристаллы с различными оптическими свойствами 1.1 - 1.K, и формируя в них волноводные каналы 2, получаем волноводные каналы с различными зависимостями относительной яркости на выходе волноводного канала от поданного на него напряжения 18.1 - 18.K. При выполнении волноводных каналов в пластинах из ниобата лития с одинаковыми оптическими свойствами имеем на выходе увеличение интенсивности светового потока в K раз по сравнению с одним волноводным каналом за счет суммирования световых потоков.

Однако, за счет выбора кристаллов управляющие напряжения могут составлять от 12 до 46 кВ.

В модуляторе происходит расширение диапазона управляющих напряжений от 12 до 4 кВ, при подаче их на управляющие электроды различных волноводных каналов, например, через коммутатор 9.

Таким образом, повышение яркости на выходе от 2 до K раз происходит за счет применения K волноводных каналов, выполненных в пластинах из ниобата лития, с одинаковыми оптическими свойствами.

Формула изобретения

1. Модулятор, содержащий электрооптическую ячейку, первый и второй контакты для подачи управляющего напряжения, отличающийся тем, что электрооптическая ячейка выполнена в виде К 2 пластинок из LiNbO3 с К 2 волноводными каналами, так что первый и второй контакты выполнены в виде управляющих электродов, нанесенных на противоположные грани каждого волноводного канала, причем входы и выходы волноводных каналов через первые и вторые волоконно-оптические кабели подсоединены соответственно к первому и второму соединителям, причем соединение входов и выходов с волоконно-оптическими кабелями выполнено через оптически плотные переходы.

2. Модулятор по п.1, отличающийся тем, что он содержит коммутатор напряжений с K выходами, подключенными к соответствующим электродам первого контакта, M K входами и P входами для подачи логических сигналов.

3. Модулятор по п.1, отличающийся тем, что все пластины из LiNbO3 имеют различные оптические свойства.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к активным элементам волоконно-оптических систем связи, элементам интегральной оптики, системам оптической обработки сигналов

Изобретение относится к электротехнике и может быть использовано в качестве простого включающего (отключающего) устройства для источников света и электрических (электронных) устройств или в качестве кнопки для ввода и вывода данных в электронных устройствах

Изобретение относится к жидкостям, используемым в пузырьковых оптических переключателях

Изобретение относится к оптическим переключателям и может быть использовано как элемент оптических сетей связи, а также в оптике и оптоэлектронике

Изобретение относится к области оптического приборостроения и может быть использовано при построении приборов для спектральной фильтрации оптических излучений, например, перестраиваемых по длине волны оптических фильтров, монохроматоров

Изобретение относится к области обработки информации и связи и может быть использовано для передачи, приема и перераспределения информационных сигналов в коммутирующих устройствах

Изобретение относится к области обработки информации и связи и может быть использовано для передачи, приема и перераспределения информационных сигналов в коммутирующих устройствах

Изобретение относится к области обработки информации и связи и может быть использовано для передачи, приема и перераспределения информационных сигналов в коммутирующих устройствах. Коммутатор включает устройства для адресации сигналов, удвоения оптических потоков, активный элемент с волноводными каналами, а также устройство для управления изменением коэффициента преломления материала волноводного канала. Волноводы выполнены из фоторефрактивного материала, а устройство для удвоения оптических потоков выполнено в виде оптического расщепителя. Устройством для управления изменением коэффициента преломления материала волноводного канала служит матрица излучателей, голографический оптический элемент и/или оптическая маска. Элементы устройства связаны между собой и с соединениями фоторефрактивных волноводов с помощью введенной проекционной оптики. Предложенное устройство реализует способ коммутации N×N оптических каналов. Технический результат - выполнение соединений входных и выходных оптических каналов без пересечений волоконно-оптических и электрических кабелей с максимальной параллельностью. 2 н. и 1 з.п. ф-лы, 8 ил.

Изобретение относится к области обработки информации и связи и может быть использовано для передачи, приема и перераспределения информационных сигналов в коммутирующих устройствах. Согласно способу коммутации на каждом этапе сборки каналов на соответствующие пары ячеек полного внутреннего отражения одновременно и параллельно для всех разрядов подают управляющие электрические сигналы для изменения коэффициента преломления материала этих ячеек и, соответственно, для перевода оптического потока в соседний волновод. Для реализации способа предложен многоканальный коммутатор, схема коммутации которого является каскадной и разветвленной, с параллельным соединением входных и выходных оптических каналов в каждом каскаде. Адреса соединения задаются с помощью линеек оптических модуляторов, число каналов удваивается с помощью оптического расщепителя, а перевод сигналов из канала в канал осуществляется подачей на ячейки ПВО электрических сигналов. В первом варианте устройства сигналы направляются на ячейки с помощью присоединенных к ним электродов, во втором варианте - с помощью матрицы излучателей света МИС и оптронов. Технический результат - выполнение соединений входных и выходных оптических каналов без пересечений волоконно-оптических и электрических кабелей с максимальной параллельностью. 3 н.п. ф-лы, 7 ил.
Наверх