Способ определения положения устройства для образования скважин

 

Изобретение относится к горной промышленности и строительству. Способ определения положения устройства для образования скважин включает снятие информации о положении в пространстве на сформированном в данный момент участке скважины устройства для образования скважин относительно измерительной базы, передачу сигнала на приемное приспособление и обработку полученного сигнала. Затем осуществляют последующие периодические измерения положения в пространстве устройства для образования скважин в процессе формирования скважины относительно измерительной базы. При этом измерительную базу перемещают по сформированной скважине совместно с устройством для образования скважин. Последующие периодические измерения положения в пространстве устройства для образования скважин осуществляют относительно по меньшей мере одной дополнительной измерительной базы. Дополнительную измерительную базу перемещают по сформированной скважине совместно с устройством для образования скважин за основной измерительной базой. Положение в пространстве основной измерительной базы определяют с помощью дополнительной измерительной базы. При этом повышается точность определения положения устройства в пространстве. 7 ил.

Изобретение относится к горной промышленности и строительству, в частности к способам определения положения в пространстве устройства для образования скважин при их проходке, и может быть использовано преимущественно при прокладке инженерных коммуникаций под препятствиями бестраншейным методом.

Известен способ определения положения устройства для образования скважин, согласно которому контроль положения в грунте устройства для образования скважин осуществляют излучением электромагнитных колебаний с помощью размещенного на перемещающемся устройстве генератора излучений и приемом сигналов на поверхности с помощью приемника излучений (Пестов Г. Н. Закрытая прокладка трубопроводов. -М.: Стройиздат, 1964, с. 51 -52, рис. 32).

К недостаткам известной технологии можно отнести сравнительно низкую точность определения в пространстве устройства для образования скважин. Указанное обстоятельство вызвано тем фактом, что в процессе образования скважины на излучаемые сигналы накладываются помехи, вызванные наличием в грунтовом массиве металлических предметов, например, проложенные ранее коммуникации, кабели связи, остатки фундамента и тому подобные включения, которые искажают передаваемый сигнал. При этом следует отметить, что при реализации используемой технологии накладываются существенные ограничения по глубине нахождения устройства для образования скважин, которые обусловлены определенным ограничением дальности прохода четкого сигнала в грунтовом массиве.

К недостаткам, ограничивающим область использования известной технологии можно отнести практически невозможность определения положения устройства для образования скважин в вертикальной плоскости, то есть положения его в пространстве по высоте.

Наиболее близким к изобретению по технической сущности и достигаемому техническому результату является способ определения положения устройства для образования скважин, включающий снятие информации о положении в пространстве устройства для образования скважин в сформированной в данный момент скважине относительно измерительной базы, передачу сигнала на приемное приспособление, обработку полученного сигнала и последующие периодические измерения положения в пространстве устройства для образования скважин в процессе формирования последней относительно измерительной базы (патент РФ N 2013499, кл. E 02 F 5/16, опублик. 1994).

Описанная выше технология частично устраняет недостатки описанного выше способа, поскольку позволяет осуществлять постоянный контроль за положением в пространстве устройства для образования скважин по мере перемещения его в грунтовом массиве.

К недостаткам известной технологии можно отнести ограничения по длине проходке, которые обусловлены используемым методом снятия информации. Так, наиболее эффективно известный способ может быть использован на длине 15 - 20 м, тогда как в среднем общая длина формируемой скважины составляет около 50 - 60 м. При этом следует отметить, что скорость проходки несколько снижается из-за необходимости проведения дополнительных операций по установке измерительной базы и определения положения ее в пространстве для установки координат системы отсчета.

Задача изобретения - создание такой технологии, которая обеспечивала бы определение точного положения в пространстве устройства для образования скважин при формировании им скважин большой протяженности при одновременном увеличении скорости проходки.

Технический эффект, который может быть получен при реализации изобретения, заключается в повышении точности определения положения в пространстве устройства для образования скважин при одновременном увеличении скорости проходки за счет сокращения затрат времени на проведение вспомогательных операций.

Задача решается за счет того, что в способе определения положения устройства для образования скважин, включающем снятие информации о положении в пространстве устройства для образования скважин в сформированной в данный момент скважине относительно измерительной базы, передачу сигнала на приемное приспособление, обработку полученного сигнала и последующие периодические измерения положения в пространстве устройства для образования скважин в процессе формирования скважины относительно измерительной базы, измерительную базу перемещают по сформированной скважине совместно с устройством для образования скважин, при этом последующие периодические измерения положения в пространстве устройства для образования скважин осуществляют относительно по меньшей мере одной дополнительной измерительной базы, которую перемещают по сформированной скважине совместно с устройством для образования скважин за основной измерительной базой, причем положение в пространстве основной измерительной базы определяют с помощью дополнительной измерительной базы.

На фиг. 1 схематично изображен процесс определения положения устройства для образования скважин при прямолинейном перемещении последнего; на фиг. 2 - то же при отклонении от заданного направления перемещения (начальный момент); на фиг. 3 - то же при отклонении от заданного направления перемещения (последующая стадия); на фиг. 4 - устройство для образования скважин с измерительной базой; на фиг. 5 - один из вариантов конструктивного выполнения узла соединения измерительных звеньев между собой; на фиг. 6 - блок-схема приспособления для передачи приема и обработки измерительных сигналов; на фиг. 7 - разрез А - А на фиг. 5.

В соответствии с предлагаемым способом определения положения устройства для образования скважин при формировании последней из предварительно обустроенного рабочего котлована 1 проходку осуществляют с помощью устройства 2 для образования скважины в грунте, в качестве которого может быть использованы, например, пневмопробойник (фиг.1 - 4), буровое устройство (на чертежах не изображено) или раскатчик грунта (на чертежах не изображен). По мере перемещения в грунтовом массиве по заданной траектории устройства 2 для образования скважины за ним образуется скважина 3. При этом по мере образования скважины 3 грунт может любым известным способом транспортироваться на поверхность непрерывно или циклически с помощью приспособления для транспортировки грунта (не показано). Формирование скважины 3 в грунтовом массиве может осуществляться и без транспортировки грунта на поверхность, т.е. уплотнением грунта в стенки образуемой скважины 3. Траектория формируемой скважины 3 зависит от многих параметров - месторасположения по трассе проходки подземных коммуникаций или фундаментов строений, плотности грунта, однородности грунтового массива по трассе, то есть наличия в нем твердых включений. При перемещении устройства 2 для образования скважины в грунтовом массиве осуществляют снятие информации о его положении в пространстве в сформированной в данный момент скважине 3. Указанная информация может быть снята, например, с помощью размещенных непосредственно на устройстве для образования скважины датчиков положения (на чертежах не изображены), которые могут быть выполнены, например, в виде гироскопов, дифференциально-трансформаторного преобразователя перемещений или уровней. Одновременно осуществляют измерение пути, который прошло устройство 2 для образования скважины от устья скважины до точки, в которой произведен съем информации с датчиков положения. Для измерения пути, который прошло в грунтовом массиве устройство 2 для образования скважин, может быть использована энергоподводящая магистраль 4, по которой к приводу (не показан) устройства 2 для образования скважин подводится энергоноситель, например, сжатый воздух, рабочая жидкость или электрический ток. Поскольку один конец энергоподводящей магистрали 4 соединен с корпусом устройства 2 для образования скважин, то при перемещении устройства 2 для образования скважин в грунтовом массиве в скважину 3 будет затягиваться и энергоподводящая магистраль 4. При нанесении через определенный интервал разметки, например, рисок или меток на защитной оболочке энергоподводящей магистрали 4 несложно определить путь, который прошло устройство 2 для образования скважин в грунтовом массиве. Снятие информации о положении в пространстве устройства 2 для образования скважин осуществляют относительно основной измерительной базы 5, которую перемещают по сформированной скважине 3 совместно с устройством 2 для образования скважин (фиг.1). Для обеспечения совместного перемещения основной измерительной базы 5 с устройством 2 для образования скважин они могут быть соединены между собой тягой. Возможен вариант конструктивного выполнения, при котором основная измерительная база 5 может быть выполнена самоходной, т.е. иметь привод для ее перемещения (не показан). В качестве основной измерительной базы 5 может быть использована, например, емкость, имеющая форму тела вращения. Предпочтительно выполнение корпуса основной измерительной базы 5 в виде цилиндра, максимальный диаметр которого не превышает диаметр образуемой скважины 3. На торцах корпуса основной измерительной базы 5 могут быть выполнены скосы, обеспечивающие центрирование корпуса основной измерительной базы 5 относительно стенок сформированной скважины 3 при перемещении по криволинейной траектории. Таким образом, основная измерительная база 5 выполняет функции системы координат, относительно которой определяется в дальнейшем изменение положения в пространстве устройства 2 для образования скважин. После снятия информации с датчиков положения сигнал передают на приемное приспособление 6, которое может быть расположено, например, в рабочем котловане 1 или непосредственно в устье сформированной скважины 3 (фиг.1 и 2). Передача сигнала может быть осуществлена по радио или проводной связью с помощью расположенных в полости скважины кабелей 7, которые электрически связывают датчики положения с приемным приспособлением 6. Затем осуществляют последующее периодическое измерение положения в пространстве устройства 2 для образования скважин в процессе формирования последней относительно по меньшей мере одной дополнительной измерительной базы 8. Дополнительную измерительную базу 8 перемещают по сформированной скважине 3 совместно с устройством 2 для образования скважин за основной измерительной базой 5. Для перемещения дополнительной измерительной базы 8 совместно с устройством 2 для образования скважин она может быть соединена тягой с основной измерительной базой 5 или иметь индивидуальный привод перемещения (на чертежах не изображен). Дополнительная измерительная база 8 может иметь аналогичную конструкцию как и основная измерительная база 5. Указанное повторное измерение осуществляют либо периодически через определенные интервалы перемещения устройства 2 для образования скважин в грунтовом массиве, либо постоянно. Положение основной измерительной базы 5 в пространстве определяют с помощью дополнительной измерительной базы 8, т. е. дополнительная измерительная база 8 выполняет функции системы координат для определения положения в пространстве основной измерительной базы 5 и/или устройства 2 для образования скважин. Снятую информацию передают на приемное приспособление 6, где осуществляют обработку полученных сигналов и сравнение параметров первоначально полученных сигналов с параметрами повторных сигналов. Если в результате сравнения этих сигналов получают расхождения, то делают вывод об изменении положения в пространстве устройства 2 для образования скважин относительно основной измерительной базы 5 и/или дополнительной измерительной базы 8 и основной измерительной базы 5 относительно дополнительной измерительной базы 8. Зная при этом величину пути, который прошло устройство 2 для образования скважин в грунтовом массиве, и его ориентацию в каждом положении, при котором было осуществлено измерение, можно с большой степенью точности определить траекторию перемещения устройства 2 в грунтовом массиве, а следовательно, и траекторию образованной скважины 3. Для обработки полученных сигналов и сравнения их между собой может быть использована расположенная на поверхности в передвижном модуле вычислительная машина, которая может выдавать обработанные сигналы, например, в виде графиков или таблиц изменения положения в пространстве устройства 2 для образования скважин при проведении каждого замера. При использовании нескольких дополнительных измерительных баз 8 они могут последовательно соединятся между собой тягами или каждая из них может иметь автономный привод передвижения. При отклонении устройства 2 для образования скважин от заданного курса в зависимости от условий проходки (расположения на трассе проходке действующих подземных коммуникаций) проходку или прекращают для извлечения устройства 2 из грунтового массива, или, воздействуя на устройство 2 для образования скважин, изменяют направление его перемещения в грунтовом массиве для выхода на заданный курс. Для изменения направления перемещения устройства 2 для образования скважин оно может быть оборудовано, например, грунтовыми рулями (не показаны).

В качестве примера, иллюстрирующего один из вариантов конструктивного выполнения датчиков положения, можно привести конструкцию приспособления для определения положения в пространстве устройства 2 для образования скважин. Указанное приспособление содержит основное измерительное звено 9, которое одним своим концом с помощью приспособления для закрепления основного измерительного звена 9 на устройстве 2 для образования скважин соединено с корпусом последнего (фиг.4). Приспособление для закрепления основного измерительного звена 9 на устройстве 2 для образования скважин может быть выполнено в виде шарнирного соединения. Второй конец основного измерительного звена 9 с помощью шарнирного соединения соединен с корпусом основной измерительной базы 5. Таким образом, основное измерительное звено 9 дополнительно выполняет функции тяги, обеспечивающей совместное перемещение основной измерительной базы 5 с устройством 2 для образования скважин. Дополнительная измерительная база 8 соединена с основной измерительной базой 5 с помощью дополнительного измерительного звена 10. Дополнительное измерительное звено 10 и основное измерительное звено 9 могут иметь аналогичную конструкцию. Одним своим концом дополнительное измерительное звено 10 шарнирно соединено с корпусом основной измерительной базы 5, а другим - с корпусом дополнительной измерительной базы 8. В случае использования нескольких дополнительных измерительных баз 8 их корпуса могут быть шарнирно соединены между собой с помощью дополнительных измерительных звеньев 10. Предпочтителен такой вариант конструктивного выполнения, при котором узлы шарнирного соединения основного и дополнительных измерительных звеньев 9 и 10 соответственно с корпусами устройства 2 для образования скважин и с основной и дополнительными измерительными базами 5 и 8 расположены соосно и на продольной оси симметрии устройства 2 для образования скважин. На поверхности или в рабочем котловане 1 может быть размещено приемное приспособление 6, предназначенное для передачи, приема и обработки сигналов, связанных соответственно с основным измерительным звеном 9 и с каждым дополнительным измерительным звеном 10 датчиков положения. Приемное приспособление 6 может быть выполнено, например, в виде электрически соединенных между собой усилителя-преобразователя 11 сигнала датчиков положения, блока 12 приема информации, блока 13 обработки информации и устройства 14 для отображения информации, например монитора (фиг.6). При этом все узлы приемного приспособления 6, обеспечивающего передачу, прием и обработку сигналов датчиков положения конструктивно могут быть объединены в одном подвижном модуле. Датчики положения могут быть электрически соединены с помощью электрического кабеля 7 с усилителем-преобразователем 11 сигнала. В рабочем котловане 1 может быть размещен счетчик 15 для определения пути, который прошло устройство 2 для образования скважин в грунтовом массиве. Счетчик 15 может быть электрически соединен с усилителем-преобразователем 11 сигнала.

Шарнирное соединение, соединяющее основное измерительное звено 9 с корпусом устройства 2 для образования скважин, а также каждое дополнительное измерительное звено 10 с корпусом соответственно основной и дополнительной измерительных баз 5 и 8 может иметь одну и более степеней свободы, обеспечивающих их поворот в одной или по меньшей мере двух плоскостях. Для обеспечения поворота основного измерительного звена 9 относительно корпуса устройства 2 для образования скважин в грунте и дополнительного измерительного звена 10 относительно корпуса соответственно основной и дополнительной измерительных баз 5 и 8 в двух плоскостях указанные шарнирные соединения могут быть выполнены, например, карманного типа, то есть включать в себя два шарнира 16 и 17 (фиг.4), каждый из которых обеспечивает поворот соответственно основного и дополнительного измерительных звеньев 9 и 10 в одной плоскости. Взаимное расположение плоскостей поворота шарниров 16 и 17 друг относительно друга определяют в зависимости от выбранной системы координат, в которой определяют положение устройства 2 для образования скважин и основной измерительной базы 5 в пространстве. Предпочтительно расположить плоскости поворота шарниров 16 и 17 взаимно перпендикулярно, то есть осуществлять определение положения устройства 2 для образования скважины в декартовой системе координат.

Для повышения точности проводимых измерений из условия обеспечения вписываемости основной и дополнительной измерительных баз 5 и 8 в формируемую скважину 3 криволинейной формы целесообразно их длину по продольной оси симметрии выбрать соизмеримой с длиной устройства 2 для образования скважин по той же оси.

В зависимости от выбранной системы измерений и необходимой точности результатов измерений в качестве датчиков положения может быть использован любой известный тип датчиков для измерения угла поворота одного элемента относительно другого элемента, например тензометрические датчики, дифференциально-трансформаторный преобразователь перемещений, оптический датчик и тому подобные датчики для измерения угла. Для повышения надежности работы и упрощения конструкции предпочтительным является использование потенциометрических датчиков, которые обеспечивают при этом достаточно высокую точность измерения.

Наиболее рациональным по технологичности и простоте изготовления является вариант конструктивного выполнения шарнирных соединений 16 и 17, при котором каждое шарнирное соединение основного и дополнительных измерительных звеньев 9 и 10 соответственно с корпусом устройства 2 для образования скважин и с корпусами основной и дополнительных измерительных баз 5 и 8 было выполнено в виде закрепленной на конце одной части соответствующего измерительного звена 9 или 10 вилки 18 с соосно расположенными радиальными каналами на каждом из ее выступов 19, закрепленного на конце второй части соответствующего измерительного звена 9 или 10 осевого выступа 20 с гнездами на его боковых поверхностях и двух втулок 21 (фиг.5). В этом случае в качестве датчиков положения предпочтительно использовать потенциометрические датчики, в корпусе 22 каждого из которых расположен подвижный выходной элемент 23. Подвижный выходной элемент 23 кинематически связан с ползуном (на чертежах не изображен) потенциометра. Каждая втулка 21 расположена в радиальном канале соответствующего выступа 19 вилки 18 и в соответствующем гнезде осевого выступа 20. Осевой выступ 20 расположен между выступами 19 вилки 18 и установлен с возможностью поворота относительно последних. Корпус 22 потенциометрического датчика жестко соединен с одним из выступов 19 вилки 18, а подвижный выходной элемент 23 потенциометрического датчика размещен внутри соответствующей втулки 21 и жестко соединен с осевым выступом 20. Таким образом, при изменении взаимного расположения частей измерительных звеньев 9 или 10 друг относительно друга происходит поворот вилки 18 относительно осевого выступа 20, а следовательно и, поворот друг относительно друга корпуса 22 потенциометрического датчика и его подвижного выходного элемента 23. При изменении положения выходного элемента 23 происходит перемещение ползуна потенциометра по его катушке, что приводит к изменению выходного параметра потенциометрического датчика на величину, пропорциональную величине угла поворота частей измерительных звеньев 9 или 10 друг относительно друга. Поскольку каждая часть измерительного звена 9 или 10 одним своим концом закреплена соответственно на корпусе устройства 2 для образования скважин и корпусе основной и дополнительной измерительных баз 5 и 8, то практически осуществляется контроль за изменением положения в пространстве устройства 2 для образования скважин относительно основной измерительной базы 5 и/или дополнительной измерительной базы 8 и основной измерительной базы 5 относительно дополнительной измерительной базы 8. Следует отметить, что для измерения угла поворота частей основного и дополнительного измерительных звеньев 9 или 10 друг относительно друга в двух плоскостях измерительные звенья 9 и 10 могут иметь третью промежуточную часть 24, которая позволяет обеспечить установку дополнительного потенциометрического датчика для измерения угла поворота частей измерительных звеньев 9 и 10 друг относительно друга во второй плоскости.

В случае выполнения основной измерительной базы 5 и/или дополнительной измерительной базы 8 с индивидуальным приводом для их перемещения наиболее предпочтительным является вариант конструктивного выполнения датчиков положения в виде закрепленного на корпусе устройства 2 для образования скважин или одной из измерительных баз 5 или 8 источника светового излучения (не показан) например лазера, и установленной на корпусе соответственно одной из измерительных баз 5 или 8 или на корпусе устройства 2 для образования скважин мишени с приемными датчиками, например светодиодами. В этом случае при изменении взаимного расположения основной измерительной базы 5 относительно устройства 2 для образования скважин и относительно дополнительной измерительной базы 8 происходит отклонение светового луча от его первоначального положения, что регистрируется соответствующими приемными датчиками на мишени. Полученный сигнал передается на усилитель-преобразователь 11 для дальнейшей обработки информации.

Описанный выше вариант конструктивного выполнения устройства, с помощью которого реализуется заявленная технология, работает следующим образом.

В начале трассы проходки отрывают рабочий котлован 1, в котором монтируют лафет (не показан) для запуска устройства 2 для образования скважин. Лафет для запуска устройства 2 для образования скважин ориентируют по проектной оси формируемой скважины 3, например, с помощью уровня и угломера. Перед запуском устройства 2 для образования скважин к его корпусу с помощью тяги, в качестве которой используют основное измерительное звено 9 присоединяют основную измерительную базу 5. К корпусу основной измерительной базы 5 с помощью дополнительного измерительного звена 10 присоединяют корпус дополнительной измерительной базы 8. В случае использования нескольких дополнительных измерительных баз 8 каждую из них с помощью соответствующей тяги, в качестве которой используют дополнительное измерительное звено 10, последовательно соединяют друг с другом. При этом поскольку устройство 2 для образования скважин и основная и дополнительная измерительные базы 5 и 8 расположены на лафете, то их продольные оси симметрии расположены на одной оси, что позволяет определить и зафиксировать с помощью датчиков положения в приемном приспособлении 6 их взаимное расположение. Затем осуществляют запуск устройства 2 для образования скважин, которое начинает погружаться в грунтовый массив под действием ударной нагрузки (в случае использования пневмопробойника) или ввинчиванием в грунтовый массив катков рабочего органа (при использовании раскатчика грунта). Возможна и другая последовательность выполнения указанных работ, при которой присоединение к корпусу устройства 2 для образования скважин основной измерительной базы 5, а затем и дополнительной измерительной базы 8, осуществляют в процессе формирования скважины 3, то есть по мере заглубления устройства 2 для образования скважин в грунтовый массив. После присоединения к корпусу устройства 2 для образования скважин основной и дополнительной измерительных баз 5 и 8 включают привод устройства 2 для образования скважин и оно внедряется в грунтовый массив, формируя своим корпусом стенки скважины 3 и затягивая в образованную скважину основную и дополнительную измерительные базы 5 и 8. В процессе формирования участка скважины 3 осуществляют снятие информации о положении в пространстве устройства 2 для образования скважин в сформированной в данный момент скважине относительно основной измерительной базы 5 и о положении в пространстве основной измерительной базы 5 относительно дополнительной измерительной базы 8. Для этого производят измерения углов отклонения частей соответственно основного и дополнительного измерительных звеньев 9 и 10 друг относительно друга. Сигналы от датчиков положения поступают в усилитель-преобразователь 11 сигнала и далее через блок 12 приема информации в блок 13 обработки информации, где они запоминаются. В случае необходимости эти сигналы могут быть вызваны на устройство 14 для отображения информации, на котором полученные данные отображаются, например, в виде таблицы или соответствующего графика. Полученная информация представляет собой данные как о положении в пространстве устройства 2 для образования скважин относительно основной измерительной базы 5 и/или дополнительной измерительной базы 8, так и о положении в пространстве основной измерительной базы 5 относительно дополнительной измерительной базы 8. При сохранении заданной траектории перемещения устройства 2 для образования скважин получаемые от датчиков положения сигналы не будут отличаться друг от друга, то позволяет, зная начальное направление перемещения устройства 2 для образования скважин в грунтовом массиве и пройденный им путь, точно определить его положение в грунтовом массиве. При этом следует отметить, что в случае необходимости, то есть при отклонении траектории перемещения в грунтовом массиве устройства 2 для образования скважин от ее проектной оси, информация о положении в пространстве которой может быть предварительно введена в устройство 14 для отображения информации, на устройство 2 для образования скважин воздействуют любым известным методом, например, грунтовыми рулями, осуществляя корректировку направления его перемещения. После снятия информации о положении в пространстве на сформированном в данный момент участке скважины 3 устройства 2 для образования скважин и основной измерительной базы 5 и передачи этой информации на приемное приспособление 6 осуществляют последующее периодическое измерения положения в пространстве устройства 2 для образования скважин и основной измерительной базы 5 в процессе формирования скважины 3 относительно соответственно основной измерительной базы 5 и дополнительной измерительной базы 8. Указанные последующие измерения осуществляют описанным выше образом и в той же последовательности. Полученная при последующих измерениях информация также поступает в блок 13 обработки информации, где она запоминается и сравнивается с полученной ранее информацией о положении в пространстве устройства 2 для образования скважин и основной измерительной базы 5. При изменении направления перемещения в грунтовом массиве устройства 2 для образования скважин, которое может быть вызвано, например, его встречей с твердым включением (валун или остатки фундамента), изменяется взаимное расположение частей основного измерительного звена 9, что регистрируется соответствующими датчиками положения. Полученная информация поступает в блок 13 обработки информации и сравнивается с ранее полученной информацией. Таким образом на начальном этапе проводимых измерений выявляется отклонение устройства 2 для образования скважин относительно основной измерительной базы 5 на угол (фиг.2). При этом следует отметить, что положение основной измерительной базы 5 относительно дополнительной измерительной базы 8 не изменилось, поскольку основная измерительная база 5 продолжает перемещаться по участку сформированной скважины 3, ориентация которого в пространстве соответствует положению проектной оси скважины 3. При дальнейшем перемещении в грунтовом массиве устройства 2 для образования скважин его курс после преодоления препятствия может стабилизироваться или оно может под действием грунтовых рулей возвратится на заданный курс. При этом основная измерительная база 5 переместится по скважине 3 на тот ее участок, где произошло отклонение от заданного курса устройства 2 для образования скважин, и, следовательно, изменится взаимное расположение частей основного измерительного звена 10, т.е. рассогласование между положением устройства 2 для образования скважин относительно основной измерительной базы 5 уменьшится (величина угла будет стремится к нулю). Полученная информация поступает в блок 13 обработки информации и сравнивается с ранее полученной информацией и по полученным результатам измерений можно было бы сделать неверный вывод о том, что устройство 2 для образования скважин возвратилось на заданный курс. Однако, сделать неверный вывод не позволяет информация полученная о положении основной измерительной базы 5 относительно дополнительной измерительной базы 8. Действительно, дополнительная измерительная база 8 еще находится на участке сформированной скважины 3, ориентация которого в пространстве соответствует проектному положению оси скважины 3, и относительно этого положения дополнительной измерительной базы 8 изменится положение основной измерительной базы 5, которая уже попала на участок скважины 3, сформированный устройством 2 для образования скважин после встречи его с препятствием (фиг.3). При изменении взаимного расположения частей дополнительного измерительного звена 10 соответствующие датчики положения подадут сигнал об изменении положения в пространстве основной измерительной базы 5 относительно дополнительной измерительной базы 8 и полученная информация поступает в блок 13 обработки информации, где сравнивается с ранее полученной. На основании полученной информации можно определить действительное направление перемещения устройства 2 для образования скважин в грунтовом массиве после его встречи с препятствием и в случае недопустимого отклонения от заданного курса определить его точное положение в грунтовом 16 массиве для дальнейшего извлечения.

Наиболее целесообразным является использование нескольких дополнительных измерительных баз 8 при выполнении устройства 2 для образования скважин с приспособлениями для управления направлением его перемещения, например, в виде грунтовых рулей. В этом случае при отклонении устройства 2 для образования скважин от заданного направления перемещения в грунтовом массиве наличие нескольких дополнительных баз 8 позволяет осуществлять корректировку курса на значительном отрезке пути. Поскольку до тех пор, пока последняя по ходу перемещения устройства 2 для образования скважин дополнительная измерительная база 8 будет находится на проектной оси скважины возможно точное определение положения в пространстве устройства 2 для образования скважин и, следовательно, возможно получение информации об эффективности принятых мер по корректировке курса перемещения устройства 2 для образования скважин. При этом следует отметить, что при формировании скважины 3 криволинейной формы последовательность операций и приемов сохранится.

Формула изобретения

Способ определения положения устройства для образования скважин, включающий снятие информации о положении в пространстве устройства для образования скважин в сформированной в данный момент скважине относительно измерительной базы, передачу сигнала на приемное приспособление, обработку полученного сигнала и последующие периодически измерения положения в пространстве устройства для образования скважин и формирования скважины относительно измерительной базы, отличающийся тем, что измерительную базу перемещают по сформированной скважине совместно с устройством для образования скважин, при этом последующие периодические измерения положения в пространстве устройства для образования скважин осуществляют относительно по меньшей мере одной дополнительной измерительной базы, которую перемещают по сформированной скважине совместно с устройством для образования скважины за основной измерительной базой, причем положение в пространстве основной измерительной базы определяют с помощью дополнительной измерительной базы.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7



 

Похожие патенты:

Изобретение относится к горной промышленности и строительству, в частности к способам определения положения в пространстве устройства для образования скважин при их проходке, и может быть использовано преимущественно при прокладке инженерных коммуникаций под препятствиями бестраншейным методом

Изобретение относится к промысловой геофизике, а также к геофизическим исследованиям скважин и может быть использовано при определении и уточнении пространственного положения забоя обсаженных и необсаженных скважин

Изобретение относится к приборам и системам, предназначенным для исследования буровых скважин, в частности для пространственного определения углового положения скважинного прибора относительно скважины

Изобретение относится к горной промышленности, конкретно к устройствам, позволяющим определять значение азимутальных и зенитных углов в глубоких скважинах при наклонно-направленном бурении нефтяных, газовых, геологоразведочных скважинах, а также при аттестации имеющихся обсаженных скважин

Изобретение относится к горной промышленности и к геофизике, конкретно - к устройствам, позволяющим определять значения азимутальных и зенитных углов в глубоких скважинах при наклонно-направленном бурении нефтяных, газовых, геологоразведочных скважин

Изобретение относится к области гироскопического и навигационного приборостроения, в частности к приборам по топографическому контролю разведочных скважин

Изобретение относится к измерениям геометрических характеристик оси буровой скважины, в частности, к гироскопическим инклинометрам, способным работать в непрерывном и точечном режимах измерения траекторных параметров скважин, как обсаженных так и необсаженных без использования магнитного поля Земли

Изобретение относится к области промысловой геофизики и может быть использовано при строительстве нефтяных и газовых скважин, в частности, при строительстве наклонно-направленных и горизонтальных скважин, где требуется высокая точность измерения зенитных углов и высокая надежность проведения измерений

Изобретение относится к бурению наклонно-направленных скважин, а именно к устройствам для определения положения отклонителя и кривизны скважины

Изобретение относится к горной промышленности и строительству, в частности к способам определения положения в пространстве устройства для образования скважин при их проходке, и может быть использовано преимущественно при прокладке инженерных коммуникаций под препятствиями бестраншейным методом

Изобретение относится к строительству и может быть использовано для устройства скважин без выемки грунта

Изобретение относится к строительной технике и может быть использовано для образования скважин различного назначения в уплотняемых грунтах и формования набивных свай

Изобретение относится к строительной технике, а более точно к устройствам для образования скважин в грунте

Изобретение относится к буровой технике и предназначено преимущественно для образования скважин в грунте путем механического уплотнения

Изобретение относится к области горной и строительной индустрии, в частности к устройствам для бестраншейной прокладки подземных коммуникаций

Изобретение относится к устройствам для раскатки скважин в грунте и может быть использовано при строительстве подземных коммуникаций закрытым способом

Изобретение относится к горной промышленности и строительству
Наверх