Способ измерения проходного сечения трубопроводов

 

Использование: для измерения проходного сечения труб с внутренними отложениями. Сущность изобретения: способ измерения проходного сечения трубопроводов заключается в том, что с помощью первого ультразвукового преобразователя, размещенного на внешней поверхности трубопровода, вводят ультразвуковые колебания по нормали к наружной поверхности трубопровода через стенку трубопровода, отложения на внутренней поверхности трубопровода и проходное сечение, заполненное жидкостью, принимают этим же ультразвуковым преобразователем отраженные от границы раздела между жидкостью и противоположной внутренней поверхностью трубы с отложениями ультразвуковые колебания и измеряют время t1 их прохождения, после этого с помощью второго ультразвукового преобразователя, установленного на внешней поверхности трубопровода диаметрально противоположно первому ультразвуковому преобразователю, излучают ультразвуковые колебания в сторону первого ультразвукового преобразователя, принимают отраженные от границы раздела между жидкостью и противоположной внутренней поверхностью трубы с отложениями ультразвуковые колебания и измеряют время t2 их прохождения, затем измеряют время t3 прохождения ультразвуковых колебаний от первого до второго ультразвукового преобразователя и проходное сечение трубы определяют по формуле D = [(t1 + t2 - 2t3)c]/2, где D - диаметр проходного сечения трубопровода; С - скорость ультразвука в жидкости. Измерения могут проводить при заполнении трубопровода водой. Технический результат заключается в повышении точности измерения проходного сечения трубопровода и в проведении измерения без прерывания процесса эксплуатации трубопровода. 1 ил.

Изобретение относится к области ультразвукового контроля изделий и может быть использовано для измерения проходного сечения труб с внутренними отложениями.

Решаемая техническая задача заключается в повышении точности измерения проходного сечения трубопровода с учетом отложений на внутренних стенках трубы и в проведении измерения без прерывания процесса эксплуатации трубопровода.

Решаемая техническая задача достигается тем, что в способе измерения проходного сечения трубопроводов с помощью первого ультразвукового преобразователя, размещенного на внешней поверхности трубопровода, вводят ультразвуковые колебания по нормали к наружной поверхности трубопровода через стенку трубопровода, отложения на внутренней поверхности трубопровода и проходное сечение, заполненное жидкостью, принимают этим же ультразвуковым преобразователем отраженные от границы раздела между жидкостью и противоположной внутренней поверхностью трубы с отложениями ультразвуковые колебания и измеряют время t1 их прохождения, после этого с помощью второго ультразвукового преобразователя, установленного на внешней поверхности трубопровода диаметрально противоположно первому ультразвуковому преобразователю, излучают ультразвуковые колебания в сторону первого ультразвукового преобразователя, принимают отраженные от границы раздела между жидкостью и противоположной внутренней поверхностью трубы с отложениями ультразвуковые колебания и измеряют время t2 их прохождения, затем измеряют время t3 прохождения ультразвуковых колебаний от первого до второго ультразвукового преобразователя и проходное сечение трубы определяют по формуле где D - диаметр проходного сечения трубопровода; C - скорость ультразвука в жидкости.

Измерения могут проводить при заполнении трубопровода водой.

На чертеже изображено устройство, с помощью которого может быть осуществлен данный способ, содержащее генератор 1 возбуждающих импульсов, выход которого соединен с входом коммутатора 2, с ним соединены первый 3 и второй 4 ультразвуковые преобразователи, выход которого соединен с усилителем 5, его выход в свою очередь, подключен к входу осциллографа 6, вход синхронизации которого подключен к генератору 1 возбуждающих импульсов. Первый ультразвуковой преобразователь 3 закреплен на внешней поверхности трубопровода 7, заполненного жидкостью 8, например водой, и имеющей отложения 9 на внутренней поверхности трубопровода. Второй ультразвуковой преобразователь 4 закреплен на диаметрально противоположной внешней поверхности трубопровода 7 диаметрально противоположно первому ультразвуковому преобразователю 3.

Рассмотрим осуществление способа с помощью описанного устройства.

Процесс измерения можно подразделить на три этапа. На первом этапе генератор 1 возбуждающих импульсов вырабатывает импульсы, которые через коммутатор 2 подаются на первый ультразвуковой преобразователь 3, возбуждающий в трубопроводе 7 ультразвуковые колебания. Этот же первый ультразвуковой преобразователь 3 принимает отраженные от границы раздела жидкостью и противоположной внутренней поверхностью трубы с отложениями ультразвуковые колебания, которые через коммутатор 2 подаются на вход усилителя 5, а затем на осциллограф 6, работающий в режиме внешней синхронизации от генератора 1 возбуждающих импульсов. По осциллографу 6 измеряется время t1 прохождения ультразвуковых колебаний от первого ультразвукового преобразователя 3 до границы раздела между жидкостью и противоположной внутренней поверхностью трубопровода с отложениями и обратно.

На втором этапе импульсы генератора 1 возбуждающих импульсов через коммутатор 2 подаются на второй ультразвуковой преобразователь 4, установленный на внешней поверхности трубопровода диаметрально противоположно первому ультразвуковому преобразователю 3. Второй ультразвуковой преобразователь 4 излучает ультразвуковые колебания в сторону первого ультразвукового преобразователя 3, принимает отраженные от границы раздела между жидкостью и противоположной внутренней поверхностью трубы с отложениями ультразвуковые колебания, которые через коммутатор 2 подаются на вход усилителя 5, а затем на осциллограф 6, работающий в режиме внешней синхронизации от генератора 1 возбуждающих импульсов. По осциллографу 6 измеряется время t2 прохождение ультразвуковых колебаний от второго преобразователя 4 до границы раздела между жидкостью и противоположной внутренней поверхностью трубы с отложениями и обратно.

На третьем этапе импульсы с генератора 1 возбуждающих импульсов через коммутатор 2 подают на первый ультразвуковой преобразователь 3, а в качестве приемного используют второй ультразвуковой преобразователь 4, сигнал с которого через коммутатор 2 подают на усилитель 5 и далее на осциллограф 6 и измеряют время t3 прохождения ультразвуковых колебаний от первого ультразвукового преобразователя 3 до второго ультразвукового преобразователя 4, проходное сечение трубы определяют по формуле где D - диаметр проходного сечения трубопровода; t1 - время прохождения ультразвуковых колебаний от первого преобразователя до границы раздела между жидкостью и противоположной внутренней поверхностью трубы с отложениями и обратно; t2 - время прохождения ультразвуковых колебаний от второго преобразователя до границы раздела между жидкостью и противоположной внутренней поверхностью трубы с отложениями и обратно;
t3 - время прохождения ультразвуковых колебаний от первого до второго преобразователей;
C - скорость ультразвука в жидкости.


Формула изобретения

1. Способ измерения проходного сечения трубопроводов, заключающийся в том, что с помощью первого ультразвукового преобразователя, размещенного на внешней поверхности трубопровода, вводят ультразвуковые колебания по нормали к наружной поверхности трубопровода через стенку трубопровода, отложения на внутренней поверхности трубопровода и проходное сечение, заполненное жидкостью, принимают этим же ультразвуковым преобразователем отраженные от границы раздела между жидкостью и противоположной внутренней поверхностью трубы с отложениями ультразвуковые колебания и измеряют время t1 их прохождения, после чего с помощью второго ультразвукового преобразователя, установленного на внешней поверхности трубопровода диаметрально противоположно первому ультразвуковому преобразователю, излучают ультразвуковые колебания в сторону первого ультразвукового преобразователя, принимают отраженные от границы раздела между жидкостью и противоположной внутренней поверхности трубы с отложениями ультразвуковые колебания и измеряют время t2 их прохождения, затем измеряют время t3 прохождения ультразвуковых колебаний от первого до второго ультразвукового преобразователя и проходное сечение трубы определяется по формуле

где D - диаметр проходного сечения трубопровода;
C - скорость ультразвука в жидкости.

2. Способ по п.1, отличающийся тем, что измерения проводят при заполнении трубопровода водой.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для контроля линейных размеров, а также в системах автоматического контроля, управления и регулирования параметров промышленных технологических процессов, например, при определении хозяйственно-питьевой и технологической воды в резервуарах систем водоснабжения

Изобретение относится к измерительной технике и могут быть использованы для контроля линейных размеров, а также в системах автоматического контроля, управления и регулирования параметров промышленных технологических процессов, например, при определении уровня хозяйственно-питьевой и технологической воды в резервуарах систем водоснабжения

Изобретение относится к измерительной технике и может быть использовано в системах автоматического контроля и регулирования параметров промышленных технологических процессов, например, при определении уровня хозяйственно-питьевой и технологической воды в резервуарах систем водоснабжения

Изобретение относится к измерительной технике и может быть использовано в системах автоматического контроля и регулирования параметров промышленных технологических процессов, например, при определении уровня хозяйственно-питьевой и технологической воды в резервуарах систем водоснабжения

Изобретение относится к газо- и нефтедобыче и транспортировке, а именно к методам неразрушающего контроля (НК) трубопроводов при их испытаниях и в условиях эксплуатации

Изобретение относится к измерительной технике и может быть использовано в системах автоматического контроля и регулирования параметров промышленных технологических процессов, например, при определении уровня хозяйственно-питьевой и технологической воды в резервуарах систем водоснабжения

Изобретение относится к автоматике и измерительной технике и может быть использовано в системах автоматического измерителя и контроля перемещений с микроЭВМ в контуре управления для преобразования линейных перемещений в цифровой код

Изобретение относится к контрольно-измерительной технике

Изобретение относится к ультразвуковому контролю изделий и может быть использовано для контроля толщины отложений внутри труб, используемых для подачи воды без остановки процесса подачи

Изобретение относится к области ультразвуковой толщинометрии и позволяет с повышенной точностью определять как толщину протяженных листовых материалов, так и диаметры прутков

Изобретение относится к устройствам неразрушающего контроля и предназначено для измерения остаточной толщины стенок технологического оборудования в химической, нефтегазодобывающей и других отраслях промышленности

Изобретение относится к области неразрушающего контроля материалов и изделий и может быть использовано при толщинометрии труб нефтегазовых скважин и трубопроводов

Изобретение относится к устройствам неразрушающего контроля и предназначено для измерения толщины объектов с существенно отличающимися свойствами распространения ультразвука, для контроля которых необходимо использование датчиков с различными рабочими частотами

Изобретение относится к области неразрушающего контроля материалов ультразвуковым методом и может быть использовано в машиностроительной и металлургической промышленности

Изобретение относится к области ультразвукового контроля и может быть использовано для определения толщины изделия
Изобретение относится к области измерительной техники и служит для определения ресурса работы ядерных реакторов типа реакторов большой мощности канальных (РБМК) по критерию измерения величины зазора между технологическим каналом и графитовой кладкой

Изобретение относится к области неразрушающего контроля и может быть использовано в металлургии, машиностроении и др

Изобретение относится к устройствам ультразвуковой дефектоскопии трубопроводов большой протяженности

Изобретение относится к контрольно-измерительной технике и может быть использовано для измерения толщины сверхтонких (мономолекулярных) покрытий
Наверх