Нераспыляемый ленточный газопоглотитель и способ его получения

 

Использование: получение нераспыляемого ленточного газопоглотителя с повышенной скоростью сорбции методами порошковой металлургии. Создание средств сверхвысоковакуумной откачки с предельным давлением ниже 1 10-10 Па. Сущность: нераспыляемый ленточный газопоглотитель изготовлен из порошкового сплава, содержащего мас.%: хром 15-40; кальций 0,01-0,5; титан - остальное. Пористость газопоглотителя составляет 20 - 60%. Ленточный газопоглотитель может быть сформирован в виде спирали. Для получения газопоглотителя порошковый сплав указанного выше состава прокатывают в ленту, а затем спекают. Насыпная плотность порошкового сплава составляет 0,8-1,6 г/см3. Изготавливаемый в соответствии с данным изобретением газопоглотитель обеспечивает скорость сорбции, превышающую быстроту откачки известных газопоглотителей. 2 с. п. ф-лы.

Изобретение относится к порошковой металлургии и касается получения ленточных газопоглотителей (геттеров), в частности с низкой температурой активирования, используемых для создания и поддержания высокого вакуума в различных вакуумных устройствах, например в электровакуумных приборах, ускорителях, электрофизических установках специального назначения.

Известен нераспыляемый ленточный газопоглотитель и способ его получения прокаткой порошков с последующим спеканием [1]. Газопоглотитель представляет собой 3-слойную ленту, причем наружные слои выполнены из порошка газопоглотителя, а внутренний несущий слой - из порошка пластичного металла. Способ предназначен для прокатки весьма нетехнологичных и хрупких, а также пожароопасных порошковых сплавов на основе циркония и отличается значительной сложностью, а получаемое таким способом изделие не достигает высокой степени сорбционной активности.

Наиболее близким техническим решением к изобретению является нераспыляемый ленточный газопоглотитель и способ его получения [2]. Газопоглотитель выполнен из порошкового сплава на титановой основе, содержащего, мас.%: ванадий 20-35; кальций 0,1-0,5; титан - остальное, с использованием прокатки порошков.

Изделие получают путем прокатки в ленту порошкового сплава указанного выше состава с последующим спеканием ленты. Однако использование ванадия по соображениям, связанным с повышенной токсичностью ванадиевого сырья, вызывает необходимость дополнительной защиты окружающей среды, а произвольно выбранная пористость известного газопоглотителя не обеспечивает необходимый для использования в высоковакуумной технике уровень сорбции геттера.

Известный способ получения газопоглотителя с произвольно выбранными техническими параметрами порошкового сплава не обеспечивает получения изделий с необходимым уровнем сорбционных свойств.

Задача, решаемая изобретением в части изделия, - увеличение скорости сорбции газопоглотителя, в части способа получения изделия - улучшение качества получаемого газопоглотителя.

Поставленная задача решается следующим образом. Нераспыляемый ленточный газопоглотитель изготавливают из порошкового сплава следующего состава, мас. %: хром 15-40; кальций 0,01-0,5; титан - остальное, а пористость газопоглотителя составляет 10 - 60%.

В способе получения нераспыляемого ленточного газопоглотителя из порошкового материала включающем его непосредственную прокатку и последующее спекание полученной ленты, в качестве исходного материала используют порошковый сплав, содержащий, мас.%: хром 15-40; кальций 0,01-0,5; титан - остальное, а перед прокаткой порошковый сплав имеет насыпную плотность 0,8-1,6 г/см3.

Сущность изобретения заключается в следующем. Нераспыляемый ленточный газопоглотитель с низкой температурой активирования выполняют из порошкового сплава на титановой основе, содержащего мас.%: хром 15-40; кальций 0,01-0,5; титан - остальное, обладающего при низкой пожароопасности высокой технологичностью. В качестве легирующего элемента в титан введен хром, стабилизирующий - структуру титана при пониженных температурах и снижающий температуру активирования сплава. При содержании хрома менее 15 мас.% не удается достичь заданного порога активирования, а скорость сорбции водорода этим материалом составляет менее 1,5 л/см2с. Увеличение содержания хрома свыше 40 мас.% приводит к снижению сорбционной способности геттеров и снижению его механических свойств за счет увеличения доли интерметаллической фазы в структуре сплава. Для получения высокой сорбционной активности при комнатной температуре ленточный газопоглотитель должен быть выполнен из материала, пористость которого составляет 20 - 60%.

Обоснование оптимальности выбранного опытным путем интервала значений пористости заключается в следующем. Изделие пористостью менее 20% в связи с низкой реальной поверхностью, непосредственно контактирующей с газовым потоком, обладает малой быстротой откачки водорода, не превышающей 2,0 м32с при комнатной температуре. Пористость более 60% приводит к резкому снижению механических свойств газопоглотителя и связанному с этим осыпанию порошка, категорически недопустимому в высоковакуумных системах, таких, как оптические порообразователи, гироскопы и т.п.

Характер работы газопоглотителя заключается в том, что его помещают в вакуумную систему, где после активирования он сорбирует активные газы (H2, CO, N2, CO2). Газопоглотители, выполненные в соответствии с изобретением, обладают повышенными сорбционными характеристиками во всем диапазоне рабочих температур 20 - 250oC и позволяют создавать средства высоковакуумной откачки с предельным давлением ниже 110-10Па.

Опытным путем установлено, что для получения газопоглотителя с указанными свойствами в качестве исходного материала перед прокаткой следует использовать порошковый сплав указанного выше состава с насыпной плотностью 0,8 - 1,6 г/см3, что определяется удельным весом и твердостью данного порошкового материала, формой и размером его частиц, при этом, как частный случай, содержание частиц размером менее 50 мкм может составлять 40 - 70 мас.% При выходе за пределы указанного интервала значений насыпной плотности снижаются технологические и сорбционные свойства получаемых геттерных элементов. Увеличение насыпной плотности до уровня более 1,6 г/см3 приводит к значительному уменьшению пористости готовых элементов, вследствие чего начальная скорость сорбции по водороду резко снижается до уровня менее 2,0 м32с. При уменьшении насыпной плотности порошков до уровня менее 0,8 г/см3 снижается прочность изделия (в< 1 кг/мм2), что вызывает осыпание кромок ленты газопоглотителя, недопустимое при его использовании.

Таким образом, способ получения газопоглотителей путем прокатки порошкового сплава указанного выше состава в сочетании с регламентированным выбором насыпной плотности материала и последующего спекания обеспечивает получение изделия с оптимальными параметрами пористости и высоким уровнем технических свойств.

Технологический передел сплава указанного состава в геттерный элемент исключает самовоспламенение и поэтому не требует специальной противопожарной защиты.

Пример. Порошок сплава, содержащего мас.%: хром 24,3; кальций 0,27; титан 75,47, рассеяли до остаточного содержания частиц размером менее 50 мкм в количестве 52 мас.%. При этом его насыпная плотность составила 1,28 г/см3. Полученный порошок прокатали в валках диаметром 100 мм при скорости 1,5 м/мин. Получили ленту толщиной 0,7 мм и шириной 20 мм, при выходе из валков ее разрезали на пластины длиной 150 мм, которые спекали при 900oC в вакууме. Пористость спеченной пластины составила 41%. Перед испытанием пластины активировали при 400oC 15 мин. Испытания сорбционной активности проводили на специальном вакуумном стенде по методу постоянного потока при давлении 110-3 - 10-6 Па над поверхностью геттера при комнатной температуре. Начальная быстрота откачки по водороду составила 4,6 м32с.

Использование изобретения позволит увеличить быстроту откачки водорода и других активных газов при существенном увеличении надежности конструкции сорбционных насосов.

Формула изобретения

1. Нераспыляемый ленточный газопоглотитель, выполненный из порошкового сплава на основе титана, содержащий кальций, отличающийся тем, что порошковый сплав дополнительно содержит хром при следующем соотношении компонентов, мас.%: Хром - 15 - 40 Кальций - 0,01 - 0,5 Титан - Остальное а пористость газопоглотителя составляет 20 - 60%.

2. Способ получения нераспыляемого ленточного газопоглотителя, включающий прокатку в ленту порошкового сплава на основе титана и последующее спекание ленты, отличающийся тем, что прокатке подвергают порошковый сплав, содержащий, мас.%: Хром - 15 - 40 Кальций - 0,01 - 0,5 Титан - Остальное с насыпной плотностью от 0,8 до 1,6 г/см3.



 

Похожие патенты:

Изобретение относится к сверхпроводящему проволочному материалу, предназначенному для сильноточных устройств, применяемых в термоядерных реакторах, накопителях энергии и иных подобных устройствах

Изобретение относится к области металлургии сплавов на основе титана, используемых для изготовления, в том числе и литьем деталей эндопротезов, имплантатов, скоб и других изделий, предназначенных для применения в травматологии, ортопедии, стоматологии и челюстно-лицевой хирургии

Изобретение относится к металлургии, конкретно к разработке неферромагнитных сплавов с минимальным тепловым расширением (температурный коэффициент линейного расширения ТКЛР ниже 310-6 K-1)

Изобретение относится к области цветной металлургии, а именно к жаропрочным сплавам на основе титана, и может быть использовано в производстве деталей (штамповок, поковок, прутков и т.д.), работающих при повышенных температурах в авиационной технике

Изобретение относится к области цветной металлургии, в частности, к свариваемым титановым сплавам с + структурой, отличающимся высокой трещиностойкостью, что позволяет создавать конструкции, обладающие повышенной живучестью

Изобретение относится к цветной металлургии, в частности к созданию титановых сплавов, предназначенных для использования в качестве конструкционного материала в сварных конструкциях, работающих при отрицательных температурах

Изобретение относится к цветной металлургии, в частности к созданию свариваемых титановых сплавов, обладающих высокой технологической пластичностью и большой стойкостью по отношению к трещинам и другим дефектам сварки

Изобретение относится к металлургии, а именно к созданию титановых сплавов, предназначенных в качестве свариваемых материалов и присадки для создания силовых конструкций авиакосмической техники

Изобретение относится к цветной металлургии, в частности к созданию сплавов, обладающих высокой свариваемостью и предназначенных для создания штампосварных конструкций

Изобретение относится к цветной металлургии, а именно к созданию титановых сплавов, предназначенных для использования в качестве свариваемых материалов и присадки для создания силовых конструкций авиакосмической техники

Изобретение относится к области порошковой металлургии и может быть использовано во многих отраслях промышленности /строительство, авиация, автомобилестроение, лифтостроение и т.д./, в областях, в которых требуется сочетание таких свойств полуфабрикатов как легкость, плавучесть, негорючесть, хорошая тепловая и звуковая защита, экологическая чистота материала

Изобретение относится к порошковой металлургии и может быть использовано при изготовлении горячекатаных листов из порошковой безвольфрамовой быстрорежущей стали

Изобретение относится к порошковой металлургии, в частности к производству концевого режущего инструмента типа метчиков, фрез, сверл и т.п

Изобретение относится к области порошковой металлургии, в частности, к способам изготовления спеченного алмазосодержащего материала в виде пластин толщиной менее 0,1 мм (100 мкм), используемого для изготовления алмазного инструмента

Изобретение относится к способу изготовления материала с регулируемым тепловым расширением

Изобретение относится к области порошковой металлургии, в частности к разработке способа, обеспечивающего возмож- ность сварки полуфабрикатов из алюминиевых порошковых сплавов

Изобретение относится к порошковой металлургии, в частности к способам изготовления армированных лент из порошков их совместной прокаткой с сеткой

Изобретение относится к устройствам для изготовления металлических волокон из сферических частиц порошка
Изобретение относится к порошковой металлургии, электротехнике, в частности, может быть использовано при изготовлении водородного электрода (ВЭ)
Наверх