Способ обработки изображения объекта

 

Изобретение относится к способам обработки визуальной информации. Его использование для преобразований с извлечением максимально информативных данных о свойствах изображаемых объектов или процессов позволяет упростить и ускорить построение пирамид. Способ включает построение пирамиды изображения с созданием копий исходного изображения и построение признаковой пирамиды. Технический результат достигается благодаря тому, что при построении пирамиды изображения и признаковой пирамиды делят изображение один или более раз, а затем усредняют по яркости как само изображение, так и полученные в результате делений подобласти, получая на множестве копий исходного изображения множество их структурных элементов, между которыми выявляют структурные связи через бинарные отношения.

Изобретение относится к способам обработки визуально информации, в частности к системам преобразований, обеспечивающим извлечение максимально информативных данных о свойствах изображенных объектов или процессов.

Известен способ выделения объекта на изображении и устройство для его осуществления.

Используется анализ изображения на пиксильном уровне при условии априорного задания критериев уровня разной яркости путем уменьшения величин сигналов на первую заданную величину.

Известен [3] способ, где также идет анализ изображения на пиксильном уровне, используется медианная фильтрация, применение которой эффективно при априорном знании специфики помех на изображении [4].

Наиболее близок к предлагаемому способу пиримидальной обработки изображения [1] , в котором реализуется три этапа преобразования информации об изображении: построение пирамиды изображения, построение "снизу - вверх" последовательных копий исходного изображения; для получения l-й копии (Gl) требуется две операции: свертка копии (Gl-1) с весовой матрицей W, реализующей ФНЧ для пирамиды Гаусса или полосовой фильтр для пирамиды Лапласа, Gl=W+Gl-1; прореживание полученного результата с коэффициентом 2 по каждому уровню пирамиды Gl= [W+Gl-1]2. В результате образуется пирамида Гаусса как множество {Gl} или пирамида Лапласа как множество {Ll}, причем Ll=Gl-W+Gl; построение признаковой пирамиды; изображение каждого уровня пирамиды изображения поддергивается операции свертывания с селективным фильтром F, весовая функция которого настроена на выявление специфического признака в изображении; обработка изображения и построение пирамиды описания; изображение по каждому уровню признаковой пирамиды проходит необходимую нелинейную обработку, например возведение в квадрат яркостных величин изображения (по каждому уровневому пикселу разрешения) для усиления различия выявляемого признака по отношению к фону; после этого по каждому уровню осуществляют построение " снизу - вверх" пирамиды Гаусса (процедура аналогична первому этапу преобразования изображения).

Данная операция преобразования является необходимой и обеспечивает устранение вероятных помех, возникающих при реализации операции дифференцирования на перовом этапе ( в случае пирамиды Лапласа) и операции усиления - на втором.

В результате формируется пирамида описания изображения, полностью зависящая от применяемого признакового фильтра F.

Недостатком прототипа является то, что способ довольно сложен, а также его недостаточное быстродействие.

Особенности преобразования информации по прототипу следующие: построение пирамид снизу вверх; обязательность блоков нелинейной обработки и дополнительной пирамиды Гаусса на выходе; специфичность фильтра F, зависящая от решающей прикладной задачи; отсутствие потенциальной возможности выявления структурных связей между элементами изображения при его описании.

Указанные недостатки устраняются предлагаемым решением.

Задачей изобретения является совершенствование известного способа.

Технический результат - упрощение и ускорение осуществления способа за счет иного построения пирамид, чем в прототипе, и исключения специфических фильтров.

Этот технический результат достигается тем, что в способе обработки изображения объекта, включающем построение пирамиды изображения с созданием копий исходного изображения, построение признаковой пирамиды, при построении пирамиды изображения и признаковой пирамиды делят изображение один или более раз, а затем усредняют по яркости как само изображение, так и полученные в результате делений подобласти, получая на множестве копий исходного изображения множество их структурных элементов, между которыми выявляют структурные связи через бинарные отношения.

Предлагаемый способ заключается в следующем. Реализуют два этапа преобразования информации об изображении.

Построение пирамиды изображения. Построение "сверху вниз" параллельных копий исходного изображения. Для получения l-й копии изображения (Il) требуется две операции: деление области изображения I (G) на (22l 22), равных по площади l подобластей {Glij} размера (22 22) с общим числом подобластей 22l(l=0,1,... ); усреднение по яркости изображения по элементам каждой подобласти где n,m - яркость пиксела исходного изображения с координатами (n,m), принадлежащими подобласти Glij. Данная операция эквивалентна операции склярного умножения элементов (пикселов) изображения по ограниченной подобласти Glij с весовой матрицей Wl, все элементы которой равны единице (представленных векторами), т.е. реализуется процесс полного сглаживания по Glij. Это обеспечивает максимальную устойчивость (регуляризацию) процесса восстановления изображения в условиях неопределенности; инвариантность получаемых признаков к возможным преобразованиям; не требуются дополнительные операции обработки изображения, как в прототипе; простоту (минимальную вычислительную трудоемкость) реализации по сравнению с прототипом.

Построение признаковой пирамиды, которая одновременно является пирамидой описания изображения.

Построение пирамиды высотой R осуществляют сверху вниз. Для этого требуется три операции: деление каждой из 22l подобластей {Glij} Il площади по осям координат x, y на Nx= 2n, N y=2m(N,M,=0,1,...) участков, образующих множество новых непересекающихся подобластей по каждому k-му варианту деления ;
усреднение по каждой подобласти Glksr множества
;
выявление бинарного отношения строгого частичного упорядочения между элементами двух непересекающихся подмножеств , каждое из которых объединяет равное число подобластей Glksr. Если некоторая пара элементов A1, A2 принадлежит Glij, то справедливо

где
u() - вещественнозначная функция на Glij, представляет весовую матрицу Wk, все элементы которой равны (-1) для объединения непересекающихся подобластей Glksr, входящий в , и (+1) для подобластей, входящих в . В этом случае выявление бинарного отношения может быть осуществлено следующим образом
kl = ml1,k-ml2,k,
где
, и суммирование производится по подобластям, принадлежащим i-му подмножеству .

Первые две операции обеспечивают выявление структурных элементов изображения I уровня l, а последняя - структурных связей между этими элементами.

В результате формируются уровни описания в виде структур (графов, образов) любого произвольного изображения в условиях отсутствия априорной информации о последнем с использованием универсальной системы однородных признаков {mlik} и системы однородных правил (бинарных отношений строгого частичного) упорядочения отношения эквивалентности и строгого порядка <. При этом построение описания и анализ для задачи распознавания изображения производят сверху вниз, от общего (целого) к частному, что характерно для системы зрительного восприятия и обеспечивает высокую производительность и достоверность узнавания изображения.

Пример осуществления способа.

Пример 1. Построение пирамиды описания (признаковой пирамиды) искаженного символа "".

Пусть матрица исходного изображения размера 8х8 имеет вид

1. Строят первый, верхний уровень пирамиды изображения.

Для этого - делят область изображения на разных по площади подобластей {G0ij}. Для l= 0 получают одну подобласть (деление отмечено пунктиром), размера 22 22 проводят усреднение по выделенным элементам подобласти. Получают копию изображения I0

где

Строят признаковую пирамиду для I0. Для этого формируют первый, верхний уровень пирамиды. При k= 0, n= 0, m=0 состоит из одной подобласти G00sr = G0ij= I0. Тогда
.

Таким образом, на первом уровне выявляют один структурный элемент m010 (граф: точка с петлей), содержащий информацию о наличии изображения;
формируют следующие два уровня признаковой пирамиды:
k=1, n=0, m=1 k=2, n=1, m=0

где
Для выявления структурных связей необходимо знать конкретные значения ij. Пусть ij= 1 по i,j, где ij 0. Тогда

Таким образом, на второй и третьем уровнях выявляют по два структурных элемента, бинарные отношения между которыми соответствуют отношению эквивалентности, т.е. имеем однородное изображение на данных уровнях описания;
формируют следующие уровни описания:
k=3, n=0, m=2 k=4, n=2, m=0

С учетом значений ij получим

Тогда и на уровнях 3 и 4 выявляют отношение строгого порядка - локализация изображения на периферии области изображения на осях x, y и отверстие в центре области изображения. Граф по осям координат имеет вид:

Итак, для описания исходного изображения оказалось достаточным построения одного уровня пирамиды изображения (I0) и 4 уровней признаковой пирамиды. Для выявления более тонкой структуры исходного изображения необходимо перейти к построению следующего уровня пирамиды изображения (I1). Для этого необходимо принять l = 1 и повторить процесс построения, описанный выше.

Пример 2. Обнаружение пятен на поверхности промышленных изделий типа "водяных" знаков, когда контрастность пятна по отношению к окружающему фону ниже 2%.

Пусть исходное изображение для простоты изложения имеет размер 4 х 4 пиксел. При этом все пикселы имеют однородную яркость, кроме одного, яркость которого на 2% ниже

где а=0,98.

Так как I=I0, то строят признаковую пирамиду:
уровень 1: R=n=m=0, , так как m010< 1, то произошло обнаружение нарушения однородности;
уровень 2: k=m=1, n=0, , т.е. место нарушения однородности локализовано в левой половине изображения:
уровень 3: k-2, n=1, m=0, , т.е. место нарушения однородности локализовано в нижней половине изображения.

Объединяя результаты описания изображения по уровням 2 и 3, (задача анализа), получают место локализации - 3-й квадрант плоскости изображения.

Эксперименты показывают, что предлагаемый способ проще в осуществлении и в 10 раз быстрее.

Основные области использования предлагаемого способы: системы технического зрения; обработка результатов аэрофотосъемки; анализ изображений в системах таможенного контроля; системы анализа и классификации товарных знаков, ярлыков и марок; системы распознавания символов и знаков произвольной конфигурации, например идентификация печатей, подписей, индексов почтовых отправлений и т.п.

Анализ подтверждает, что рассмотренное решение соответствует критериям новизны, изобретательского уровня и промышленной применимости.


Формула изобретения

Способ обработки изображения объекта, включающий построение пирамиды изображения с созданием копий исходного изображения, построение признаковой пирамиды, отличающийся тем, что при построении пирамиды изображения и признаковой пирамиды делят изображение один или более раз, а затем усредняют по яркости как само изображение, так и полученные в результате делений подобласти, получая на множестве копий исходного изображения множество их структурных элементов, между которыми выявляют структурные связи через бинарные отношения.



 

Похожие патенты:

Изобретение относится к способам для считывания и распознавания напечатанных или написанных знаков, а более точно - к способу классификации ориентированных отпечатков пальцев

Изобретение относится к системам обработки информации, в частности к устройствам обработки и визуализации изображений

Изобретение относится к способам для считывания и распознавания напечатанных или написанных знаков, а более точно - к способу классификации ориентированных отпечатков пальцев

Изобретение относится к области дешифрирования изображений, получаемых системами дистанционного зондирования

Изобретение относится к вычислительной и телевизионной технике

Изобретение относится к автоматике и вычислительной технике

Изобретение относится к нейробионике и технической кибернетике и может быть использовано для обнаружения, распознавания и идентификации различных объектов

Изобретение относится к способу сокращения избыточности передаваемой информации

Изобретение относится к области обработки телевизионных изображений, и в частности, к способам определения положения объекта по последовательности телевизионных изображений для управления угловым перемещением линии визирования камеры в подвижных системах видеонаблюдения и слежения

Изобретение относится к устройству и способу обработки изображений для оценивания для зафиксированного изображения состояния фиксации изображения. Технический результат - более точная и эффективная оценка входного изображения. Технический результат достигается тем, что модули от модуля 23 вычисления количественного показателя степени размытости до модуля 27 вычисления количественного показателя насыщенности цвета извлекают из входного изображения количественное значение заданной характеристики и вычисляют количественный показатель по отдельно взятой характеристике, характеризующий оценку входного изображения на основе этой характеристики. Так, модуль 24 вычисления количественного показателя яркости извлекает из входного изображения в качестве количественного значения характеристики, значение яркости и вычисляет количественный показатель яркости, характеризующий оценку, основанную на распределении значений яркости на участке, занимаемом объектом, на входном изображении. Модуль 28 вычисления суммарного количественного показателя вычисляет на основе каждого количественного показателя отдельно взятых характеристик суммарный количественный показатель, характеризующий для входного изображения оценку состояния фиксации изображения. 2 н. и 5 з.п. ф-лы, 28 ил.

Изобретение относится к специализированным средствам обработки цифровых изображений. Устройство для преобразования цифровых изображений, полученных при гистологических исследованиях, содержит: блок формирования двумерных массивов компонент X, Y и Z, вход которого соединен с выходом блока формирования и хранения исходного изображения; блок формирования нормализованных гистограммных статистик для компонент X, Y и Z, вход которого соединен с выходом блока формирования двумерных массивов компонент X, Y и Z; блок проверки гистограммных статистик, вход которого соединен с выходом блока формирования нормализованных гистограммных статистик для компонент X, Y и Z; блок приведения и преобразования в цветовое пространство LAB CIE и блок преобразования в цветовое пространство RGB, вход каждого из которых соединен с соответствующим выходом блока проверки гистограммных статистик для компонент X, Y и Z, а выход - соединен с соответствующим входом блока слияния и хранения. Предлагаемое устройство расширяет функциональные возможности и может быть использовано при гистологических исследованиях, для предварительной обработки данных светочувствительной матрицы в гистограммные статистики в двух цветовых пространствах одновременно - CIELAB и RGB. 1 ил.

Изобретение относится к области цифровой обработки изображений. Техническим результатом является повышение чувствительности градиентного способа выделения контуров к полезным яркостным перепадам изображения в условиях импульсных помех. Предложен способ помехоустойчивого градиентного выделения контуров объектов на цифровых полутоновых изображениях. Согласно способу, предварительно осуществляют операцию оценивания положения помех на изображении, после чего для каждого элемента изображения формируют четыре разноориентированные маски Превитта, значения коэффициентов которых изменяют в зависимости от наличия и положения помех, а при наличии помех одновременно в трех элементах любой из полумасок, входящих в состав разноориентированных масок, размер полумаски увеличивают на число непораженных помехами окаймляющих элементов. Весовым коэффициентам новых элементов маски присваивают значения, сумма которых по модулю равна сумме значений по модулю второй полумаски. После этого с использованием данных масок вычисляют приближенное значение модуля градиента изображения, и путем его порогового преобразования получают контуры объектов на изображении. 13 ил.

Изобретение относится к технологиям обработки цифровых изображений. Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение точности восстановления элементов цветного изображения, искаженных импульсными помехами. Предложен способ устранения импульсных помех на цветных изображениях. Способ заключается в обнаружении искаженных элементов и последующей векторной медианной фильтрации искаженных элементов. Согласно способу дополнительно проверяют наличие либо отсутствие искажений элементов в каждой цветовой компоненте. В случае если элементы искажены не во всех компонентах, то выбирают элементы неискаженных компонент и выполняют межканальную градиентную реконструкцию элементов в искаженной компоненте по соответствующим выбранным элементам неискаженных компонент. В случае если элементы искажены во всех компонентах, то выполняют векторную медианную фильтрацию элементов трех цветовых компонент, и в случае если искажения элементов отсутствуют во всех компонентах, то элементы трех цветовых компонент сохраняют без изменений. 5 ил.

Изобретение относится к технологиям оптического распознавания символов серий изображений с текстовыми символами. Техническим результатом является повышение качества оптического распознавания символов за счет определения порядка кластеров символьных последовательностей посредством определения медианы перестановок кластеров символьных последовательностей. Предложен способ для анализа результатов распознавания серии изображений. Способ содержит этап, на котором получают текущее изображение из серии изображений исходного документа, причем текущее изображение хотя бы частично перекрывает предыдущее изображение из серии изображений. Далее, согласно способу, выполняют оптическое распознавание символов (OCR) текущего изображения для получения распознанного текста и соответствующей ему разметки текста. А также определяют с использованием распознанного текста и соответствующей ему разметки текста множество текстовых артефактов для каждого текущего изображения и предыдущего изображения, причем каждый текстовый артефакт представлен символьной последовательностью, которая обладает частотой встречаемости в распознанном тексте ниже пороговой частоты. 3 н. и 18 з.п. ф-лы, 11 ил.

Изобретение относится к системам стабилизации видеоизображения

Изобретение относится к способам обработки визуальной информации

Наверх