Способ отверждения сульфатных регенератов водоподготовки

 

Способ включает смешение регенератов с измельченным доменным шлаком, гидроксидом натрия и гидроксидом алюминия коагуляционного осадка водоподготовки при массовом соотношении 1:(2,5-3,7):(0,125-0,185):(0,025-0,075) соответственно. Смесь отверждают при 20-90oC. Технический результат заключается в увеличении прочности отвержденного продукта, снижении выщелачиваемости из него радионуклидов, обеспечении возможности отверждения сульфатных регенератов совместно с другими растворами радионуклидов. 1 табл.

Изобретение относится к переработке солевых отходов АЭС путем их отверждения.

В системе водоподготовки АЭС используют ионнообменные фильтры, регенерацию которых производят серной кислотой и натриевой щелочью. При смешении отработавших регенератов образуется раствор сульфата натрия, подлежащий утилизации, так как сброс его в окружающую среду невозможен из-за высокой концентрации тяжелых металлов, содержащихся в продуктах коррозии.

Наиболее простым способом отверждения солевых отходов АЭС является цементирование при водоцементном соотношении 0,35 - 0,7 [1].

Недостатком этого способа является высокая вымываемость из цемента солей и высокая стоимость портландцемента.

Известен способ отверждения солевых концентратов АЭС путем смешения с измельченным до удельной поверхности 2800 см2/г доменным гранулированным шлаком или шлакопортландцементом (смесью 20% портландцемента и 80% доменного шлака) при водовяжущем отношении 0,2 - 0,6 (оптимальное 0,4) и отверждении смеси при температуре 20 - 90oC [2].

Недостатком данного способа является низкая прочность и высокая вымываемость солей из продуктов, полученных при отверждении сульфатных регенератов.

Ближайшим аналогом является способ отверждения сульфатных регенератов АЭС путем смешения с измельченным до удельной поверхности не менее 4500 см2/г доменным шлаком и активаторами: гидроксидом натрия и оксидом кальция при массовом соотношении 1 : 2,5-3,7 : 0,125-0,185 : 0,125-0,185 и отверждении при 20 - 90oC [3].

Данный способ по своей технической сущности и достигаемому эффекту наиболее близок к заявляемому.

Недостатком данного способа является заниженная механическая прочность и высокая вымываемость тяжелых металлов из отвержденных продуктов.

Задача, решаемая данным изобретением, заключается в увеличении прочности отвержденных продуктов и снижении вымываемости из них солей тяжелых металлов, а также в обеспечении отверждения сульфатных регенератов совместно с другими отходами водоподготовки АЭС.

Сущность изобретения заключается в том, что в способе отверждения сульфатных регенератов водоподготовки АЭС, включающем их смещение с измельченным доменным шлаком и активаторами: гидроксидом натрия и многовалентным гидроксидом и отверждении при температуре 20 - 90oC, предложено в качестве многовалентного гидроксидного активатора использовать гидроксид алюминия коагуляционного осадка водоподготовки, при этом массовое соотношение сульфатных регенератов, доменного шлака, гидроксида натрия и гидроксида алюминия составляет: 1 : 2,5-3,7 : 0,125-0,185 : 0,025-0,075.

В системе водоподготовки АЭС перед ионнообменной очисткой проводят коагуляционную обработку воды сульфатом алюминия с флокулянтом - полиакриламидом (ПАА), которая обеспечивает выделение в осадок вместе с гидроксидом алюминия взвесей, солей жесткости и гидроксидов тяжелых металлов. Осветленная вода поступает на ионнообменные фильтры, а пульпа гидроксидного осадка, загрязненная тяжелыми металлами, подлежит утилизации. Новизной предлагаемого способа, по сравнению с ближайшим аналогом, является использование в качестве многовалентного гидроксидного активатора алюминия коагуляционного осадка водоподготовки АЭС вместо известного. По сравнению с известным способом отверждения сульфатных регенератов обработка измельченным доменным шлаком, гидроксидом натрия и коагуляционным осадком гидроксида алюминия в массовом соотношении: 1 : 2,5-3,7 : 0,125-0,185 : 0,025-0,075 с последующим отверждением при температуре 20 - 90oC обеспечивает не только повышение механической прочности отвержденных продуктов, но и снижение вымываемости из них солей тяжелых металлов.

Способ осуществляется следующим образом. Сульфатные регенераты смешивают с пульпой коагуляционного осадка гидроксида алюминия и добавляют измельченный до удельной поверхности не менее 4500 см2/г доменный гранулированный шлак и гидроксид натрия в массовом соотношении: жидкие отходы водоподготовки АЭС, доменный шлак, гидроксид натрия и гидроксид алюминия: 1 : 2,5-3,7 : 0,125-0,185 : 0,025-0,075, а затем производят отверждение при температуре 20 - 90 oC. При этом достигается прочность отвержденных продуктов 26 - 37 МПа, что позволяет ограниченно использовать их в строительных целях на территории АЭС (например, для хранилища РАО), а вымываемость тяжелых металлов не превышает 110-5 см/сут. , что обеспечивает их экологическую безопасность для этих целей.

Примеры конкретного исполнения.

Пример 1 (прототип). В 1000 г регенерата, содержащего 1,50% Na2SO4, при перемешивании вводят 155 г NaOH, 155 г CaO и 3000 г измельченного до удельной поверхности 4500 см2/г доменного гранулированного шлака, содержащего 42,70% SiO2; 32,14% CaO; 13,53% Al2O3 + TiO2; 0,35% Fe2O3; 5,10% FeO; 0,17% MgO; 5,42% MnO2; 0,09% SO3; 0,32% S. Приготовленную смесь отверждают пропариванием с подъемом температуры до 90oC в течение 3 ч, выдержкой при 90 - 95oC в течение 6 ч и охлаждении до 20oC в течение 3 ч. Изучение вымываемости солей из отвержденных продуктов проводят по ГОСТ 29114-91. Тяжелые металлы определяют по метке Co-60.

Пример 2. 500 г сульфатного регенерата смешивают с 500 г коагуляционного осадка 85% влажности, содержащего в твердой фазе 66% Al(OH)3 (50 г сухого Al(OH)3), 12% полиакриламида и 22% взвесей силикатов, добавляют 155 г NaOH и 3300 г измельченного доменного шлака, а затем отверждают как в примере 1.

Примеры 3 - 6 отличаются от примера 2 соотношением компонентов.

Характеристика отвержденных продуктов приведена в таблице.

Из данных, приведенных в таблице, видно, что за пределами предлагаемого соотношения отходов водоподготовки: NaOH:Al(OH)3 прочность образцов составляет менее 25 МПа (примеры 4 и 6), а вымываемость тяжелых металлов составляет более 110-5 см/сут.

По сравнению с прототипом прочность отвержденных продуктов возрастает на 30 - 70%, а вымываемость тяжелых металлов снижается в 2 - 5 раз. При этом исключается расходование извести, а в качестве многовалентного активатора используют отработавший Al(OH)3, а отверждению подлежат не только сульфатные регенераты, но и такие отходы водоподготовки АЭС, как коагуляционные пульпы, также являющиеся концентратами тяжелых металлов и других вредных загрязнений. Таким образом, решается проблема утилизации всех отходов водоподготовки АЭС, а отвержденный продукт может быть использован в строительных целях на территории АЭС.

Предлагаемый способ может осуществляться на промышленном оборудовании для цементирования, доменные шлаки являются отходами металлургии и выпускаются в промышленных масштабах, так что его практическое применение не встретит затруднений и приведет к улучшению экологической ситуации в районе АЭС, то есть способ является промышленно применимым.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ 1. Никифоров А.С. и др. Обезвреживание жидких радиоактивных отходов. М., Энергоатомиздат, 1985, с. 131.

2. А.с. СССР N 880149, кл. G 21 F 9/04, 1982.

3. Способ отверждения сульфатных регенератов АЭС. Патент России N 2059312, кл. G 21 F 9/16, 1996.

Формула изобретения

Способ отверждения сульфатных регенератов водоподготовки АЭС, заключающийся в смешении регенератов с измельченным доменным шлаком, активаторами - гидроксидом натрия и многовалентным гидроксидом и отверждении при температуре 20 - 90oС, отличающийся тем, что в качестве многовалентного гидроксидного активатора используется гидроксид алюминия коагуляционного осадка водоподготовки, при этом массовое соотношение сульфатных регенератов, доменного шлака, гидроксида натрия и гидроксида алюминия составляет 1 : 2,5 - 3,7 : 0,125 - 0,185 : 0,025 - 0,075.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к обработке жидких радиоактивных отходов (ЖРО) путем отверждения

Изобретение относится к области переработки жидких радиоактивных отходов (ЖРО), в частности отработавших моющих растворов, таких как воды спецпрачечной АЭС

Изобретение относится к области переработки жидких радиоактивных отходов и предназначено для остекловывания смесей гомогенных и гетерогенных жидких радиоактивных отходов, содержащих ионообменные смолы

Изобретение относится к способам отверждения жидких радиоактивных отходов (ЖРО) путем их цементирования

Изобретение относится к области производства радиоизотопных источников и может быть использовано в радиохимической промышленности

Изобретение относится к области переработки жидких радиоактивных отходов, образующихся при регенерации облученного ядерного топлива (ОЯТ) и может быть использовано в радиохимической промышленности
Изобретение относится к охране окружающей среды, а точнее к переработке радиоактивных отходов (РАО) путем их фиксации в устойчивой твердой среде

Изобретение относится к обработке радиоактивных и токсичных отходов методом остекловывания

Изобретение относится к технологии переработки жидких радиоактивных отходов (ЖРО) путем их отверждения

Изобретение относится к способу очистки жидких радиоактивных отходов и может быть использовано в радиохимической технологии при обращении с отходами

Изобретение относится к переработке жидких радиоактивных отходов низкого и среднего уровня активности, в частности к отверждению отходов путем их включения в искусственные минералоподобные формы, пригодные для последующего безопасного хранения
Изобретение относится к способу переработки радиоактивных щелочных металлов и состоит во взаимодействии щелочного металла, находящегося в жидкой фазе, с твердым галоидсодержащим полимером
Изобретение относится к области совместной обработки твердых и жидких радиоактивных отходов и предназначено для перевода радиоактивного грунта, содержащего органические компоненты, и жидких радиоактивных отходов в цементный камень
Изобретение относится к области переработки зольных остатков от сжигания твердых радиоактивных отходов

Изобретение относится к переработке высокотоксичных неорганических отходов, таких как хром-, ртуть-, мышьяксодержащих, отходов гальванического производства, преимущественно радиоактивных отходов (РАО), в частности РАО переработки ядерного топлива высокой и средней активности
Изобретение относится к области переработки радиоактивных отходов ядерного топливного цикла и может быть использовано для их фиксации в керамические матричные материалы
Изобретение относится к утилизации жидких радиоактивных отходов ядерных энергетических установок, в частности атомных электростанций, с борным регулированием в том числе

Изобретение относится к области переработки радиоактивных отходов низкого и среднего уровней активности, в частности к отверждению отходов, путем их включения в искусственные минералоподобные формы, пригодные для долговременного захоронения
Наверх