Способ очистки продуктов каталитического риформинга от олефиновых углеводородов

 

Изобретение относится к области нефтепереработки и может быть использовано в процессе очистки продуктов каталитического риформинга от олефиновых углеводородов. Продукты риформинга гидрируют на платинусодержащем моно-, би- или полиметаллическом катализаторе в присутствии водорода при повышенных температуре и давлении. Катализатор периодически в течение межрегенерационного периода и перед регенерацией обрабатывают потоком жидких углеводородов, в качестве которых используют или моноциклические ароматические углеводороды, или их смесь, или катализат риформинга, или гидроочищенные бензиновые фракции, возможно в присутствии водорода, в количестве 2-10 м33 катализатора при температуре 20 - 180oC, давлении 0,1-3,0 МПа. В результате восстанавливается первоначальная активность катализатора в межрегенерационный период, после регенерации степень гидрирования олефинов снижается на 4% против 15%, что увеличивает срок эксплуатации катализатора. 1 з.п. ф-лы, 2 табл.

Изобретение относится к области нефтепереработки и может быть использовано в процессе очистки продуктов каталитического риформинга от олефиновых углеводородов.

Уровень техники заключается в следующем.

Для получения ароматических углеводородов высокого качества методом каталитического риформинга бензиновых фракций с последующей жидкофазной экстракцией необходимо очистить продукты риформинга от олефиновых углеводородов. Одним из методов очистки продуктов риформинга от олефиновых углеводородов является их селективное гидрирование в парогазовом потоке на платинусодержащих катализаторах при температуре 150-250oC и повышенном давлении.

Известны способы очистки продуктов риформинга от олефиновых углеводородов их гидрированием на монометаллическом алюмоплатиновом катализаторе с содержанием платины 0,10-0,15 мас.% [2] и на комбинированной загрузке монометаллических алюмоплатиновых катализаторов [3], обеспечивающие селективное гидрирование олефинов при температуре 160-220oC и повышенном давлении.

Недостатками данных способов являются снижение степени гидрирования олефинов от 98% для свежего катализатора до 80% после 12 мес эксплуатации и снижение степени гидрирования олефинов до 75% после регенерации.

Наиболее близким к предлагаемому является способ очистки продуктов риформинга от олефиновых углеводородов с использованием более стабильного полиметаллического катализатора, один из металлов которого - платина [1], обеспечивающего селективное гидрирование олефинов при температуре 160-220oC и повышенном давлении.

Известный способ имеет следующие недостатки: снижение степени гидрирования олефинов от 97,5% для свежего катализатора до 87% после 10 мес. эксплуатации; снижение степени гидрирования олефинов до 82% после регенерации; после второй и последующих регенераций не обеспечивается необходимая степень гидрирования олефинов, что приводит к вынужденному снижению жесткости процесса риформинга с соответствующим снижением выработки ароматических углеводородов и, в конечном итоге, требует замены катализатора.

Изобретение направлено на решение задачи - поддержание высокой активности и селективности в межрегенерационный период, увеличение сроков эксплуатации платинусодержащих катализаторов очистки продуктов риформинга от олефиновых углеводородов.

Решение поставленной задачи опосредовано новым техническим результатом, заключающимся в периодической обработке катализатора потоком жидких углеводородов, возможно в присутствии водорода, что обеспечивает поддержание начальной активности катализатора в межрегенерационный период и снижение потерь его активности во время регенерации.

Очистку продуктов риформинга от олефиновых углеводородов проводят путем селективного гидрирования последних в присутствии водорода при повышенных давлении и температуре на платинусодержащем катализаторе.

Гидрирование проводят на моно-, би-, или полиметаллическом платинусодержащем катализаторе, и катализатор периодически в межрегенерационный период и перед регенерацией обрабатывают потоком жидких углеводородов, в качестве которых используют или моноциклические ароматические углеводороды, или их смесь, или катализат риформинга, или гидроочищенные бензиновые фракции, возможно в присутствии водорода, в количестве 2-10 м33 катализатора при температуре 20-180oC и давлении 0,1-3,0 МПа.

Пример 1. При каталитическом риформинге гидроочищенной бензиновой фракции, выкипающей в пределах 68 - 105oC, получают катализатор следующего состава, мас.%: Непредельные углеводороды - 1,2 (бромное число 2,50 г Br/100 г) Ароматические углеводороды, в т.ч. - 42,5 Бензол - 16,6 Толуол - 22,5 Этилбензол и ксилолы - 3,4 Предельные углеводороды - 56,3
Извлеченный из реактора промышленной установки после 10 мес. эксплуатации в процессе очистки продуктов риформинга от олефиновых углеводородов полиметаллический катализатор Г-01 с содержанием, мас.%: платины 0,10, рения 0,025, кадмия 0,10, сурьмы 0,005 на активной окиси алюминия. ТУ 38.101998-84, загружают в реактор пилотной установки в количестве 50 см3.

Проводят обработку катализатора подачей водородсодержащего газа (ВС) и катализата при температуре 180oC и давлении 3,0 МПа. При этом объемное соотношение ВСГ к катализату составляет 1,2 тыс. нм33. Подают жидкую фазу в количестве 3 м33 катализатора.

Очистку продуктов риформинга от олефиновых углеводородов проводят при температуре 170oC, давлении 1,5 МПа, объемной скорости по сырью 10 ч-1 и циркуляции водородсодержащего газа 1,2 тыс.нм33 сырья.

Полученный гидрогенизат содержит 42,3 мас.% ароматических углеводородов и имеет бромное число 0,06 (табл. 1).

Пример 2. Полиметаллический катализатор, указанный в примере 1, загружают в реактор пилотной установки в количестве 50 см3.

Проводят обработку катализатора подачей ВСГ и катализатора при температуре 130oC и давлении 1,6 МПа. При этом объемное соотношение ВСГ и катализата составляет 1,2 тыс. нм33. Подают жидкую фазу в количестве 4 м33 катализатора.

Очистку продуктов риформинга, состав которых приведен в примере 1, проводят в условиях примера 1.

Полученный гидрогенизат содержит 42,2 мас.% ароматических углеводородов и имеет бромное число 0,06 (табл. 1).

Примеры 3-6. Полиметаллический катализатор, указанный в примере 1, загружают в реактор пилотной установки в количестве 50 см3.

Проводят обработку катализатора подачей жидких углеводородов, указанных в табл. 1, в условиях и в количестве, указанных в табл. 1.

Очистку продуктов риформинга, состав которых приведен в примере 1, проводят в условиях примера 1.

Пример 7 (по прототипу). Полиметаллический катализатор, указанный в примере 1, загружают в реактор пилотной установки в количестве 50 см3.

Очистку продуктов риформинга, состав которых приведен в примере 1, проводят в условиях примера 1 без предварительной обработки катализатора.

Полученный гидрогенизат содержит 42,4 мас.% ароматических углеводородов и имеет бромное число 0,33 (табл. 1).

Таким образом, очистка продуктов риформинга по известному способу приводит к значительному снижению активности катализатора в течение межрегенерационного периода.

Пример 8 (для сравнения). Свежий полиметаллический катализатор Г-01 загружают в реактор пилотной установки в количестве 50 см3.

Очистку продуктов риформинга, состав которых приведен в примере 1, проводят в условиях примера 1.

Полученный гидрогенизат содержит 42,2 мас.% ароматических углеводородов и имеет бромное число 0,06 (табл. 1).

Таким образом, обработка катализатора в условиях примеров 1 - 6 позволяет восстановить его начальную активность при сохранении высокой селективности.

Пример 9. Полиметаллический катализатор, указанный в примере 1, загружают в реактор пилотной установки в количестве 50 см3 и проводят его обработку подачей ВСГ и катализата в условиях примера 2.

Катализатор подвергают регенерации подачей азото-воздушной смеси с концентрацией кислорода 2 мас.% при температуре 300oC и давлении 1,0 МПа, что соответствует условиям регенерации на промышленной установке. Регенерацию катализатора проводят до достижения концентрации CO2 на выходе из реактора менее 0,1 мас.%.

Восстанавливают катализатор подачей водородсодержащего газа при температуре 170oC и давлении 1,5 МПа в течение 8 ч.

Очистку продуктов риформинга, состав которых приведен в примере 1, проводят в условиях примера 1. При этом получают гидрогенизат, содержащий 42,3 мас. % ароматических углеводородов и имеющий бромное число 0,15 (табл. 1).

Таким образом, активность подвергнутого обработке катализатора при регенерации снижается на 4%.

Пример 10 (по прототипу). Полиметаллический катализатор, указанный в примере 1, загружают в реактор пилотной установки в количестве 50 см3.

Катализатор без предварительной обработки подвергают регенерации и последующему восстановлению в условиях примера 9.

Очистку продуктов риформинга, состав которых приведен в примере 1, проводят в условиях примера 1. При этом получают гидрогенизат, содержащий 42,4 мас. % ароматических углеводородов в имеющий бромное число 0,44 (табл. 1).

Таким образом, очистка продуктов риформинга по известному способу приводит к снижению активности катализатора при регенерации на 15%.

Пример 11. Алюмоплатиновый катализатор селективного гидрирования олефинов АП-15 с содержанием 0,15 мас.% платины на активной окиси алюминия, ТУ 38.101283-80, извлеченный из реактора промышленной установки после 12 мес. эксплуатации в процессе очистки продуктов риформинга от олефиновых углеводородов, загружают в реактор пилотной установки в количестве 50 см3.

Проводят обработку катализатора подачей ВСГ и катализата риформинга в объемном соотношении 1,2 тыс. нм3 ВСГ на 1 м3 катализата при температуре 130oC и давлении 1,6 МПа. Подают жидкую фазу в количестве 4 м33 катализатора.

Очистку продуктов риформинга, состав которых приведен в примере 1, проводят в условиях примера 1. При этом получают гидрогенизат, содержащий 42,3 мас.% ароматических углеводородов и имеющий бромное число 0,05 (табл. 2).

Пример 12 (по аналогу). Алюмоплатиновый катализатор, указанный в примере 11, загружают в реактор пилотной установки в количестве 50 см3.

Очистку продуктов риформинга, состав которых приведен в примере 1, проводят в условиях примера 1 без предварительной обработки катализатора. При этом получают гидрогенизат, содержащий 42,4 мас.% ароматических углеводородов и имеющий бромное число 0,50 (табл. 2).

Таким образом, очистка продуктов риформинга в соответствии с аналогом приводит к значительному снижению активности катализатора в течение межрегенерационного периода.

Пример 13 (для сравнения). Свежий алюмоплатиновый катализатор АП-15 загружают в реактор пилотной установки в количестве 50 см3.

Очистку продуктов риформинга, состав которых приведен в примере 1, проводят в условиях примера 1. При этом получают гидрогенизат, содержащий 42,3 мас.% ароматических углеводородов и имеющий бромное число 0,05 (табл. 2).

Таким образом, обработка алюмоплатинового катализатора в условиях примера 11 (по предлагаемому способу) восстанавливают его начальную активность.

Пример 14. Алюмоплатиновый катализатор, указанный в примере 11, загружают в реактор пилотной установки в количестве 50 см3 и проводят его обработку в условиях примера 5.

Проводят регенерацию и восстановление катализатора в условиях примера 9.

Очистку продуктов риформинга, состав которых приведен в примере 1, проводят в условиях примера 1.

Полученный гидрогенизат содержит 42,3 мас.% ароматических углеводородов и имеет бромное число 0,15 (табл. 2).

Таким образом, активность катализатора при регенерации после его обработки снижается на 4%.

Пример 15 (по аналогу). Алюмоплатиновый катализатор, указанный в примере 11, загружают в реактор пилотной установки в количестве 50 см3.

Катализатор без предварительной обработки подвергают регенерации и восстановлению в условиях примера 9.

Очистку продуктов риформинга, состав которых приведен в примере 1, проводят в условиях примера 1.

Полученный гидрогенизат содержит 42,4 мас.% ароматических углеводородов и имеет бромное число 0,63 (табл. 2).

Таким образом, очистка продуктов риформинга в соответствии с аналогом приводит к снижению активности катализатора во время регенерации на 23%.

Из результатов испытаний видно, что очистка продуктов риформинга от олефиновых углеводородов по предлагаемому способу (примеры 1-6, 11) обеспечивает поддержание начальной активности платинусодержащих катализаторов в межрегенерационный период и снижение их активности во время регенерации (примеры 9, 14) на 4% против 15%, что позволяет увеличить срок эксплуатации катализаторов.

Оптимальный температурный режим и режим давления выбраны исходя из того, что максимальное давление при обработке катализатора 3 МПа определяется параметрами оборудования установок риформинга. Температура обработки катализатора выбирается из условия нахождения углеводородов, используемых при обработке, в жидкой фазе, что ограничивает максимальную температуру 180oC. При повышении температуры и увеличении концентрации ароматических углеводородов в жидкой фазе требуется подача меньшего ее количества для восстановления начальной активности катализатора, поэтому нецелесообразно проводить обработку катализатора при температуре ниже 20oC.


Формула изобретения

1. Способ очистки продуктов риформинга от олефиновых углеводородов путем селективного гидрирования последних при повышенных давлении и температуре в присутствии водорода на платинусодержащем катализаторе, отличающийся тем, что гидрирование проводят в присутствии моно-, би- или полиметаллическом платинусодержащем катализаторе и катализатор периодически в течение межрегенерационного периода и перед регенерацией обрабатывают потоком жидких углеводородов, возможно в присутствии водорода, в количестве 2 - 10 м33 катализатора при температуре 20 - 180oС, давлении 0,1 - 3,0 МПа.

2. Способ по п.1, отличающийся тем, что в качестве углеводородов используют или катализаты риформинга, или моноциклические ароматические углеводороды, или их смесь, или гидроочищенные бензиновые фракции.

РИСУНКИ

Рисунок 1



 

Похожие патенты:
Изобретение относится к нефтехимии и нефтепереработке и может быть использовано в процессах гидрообессеривания углеводородных фракций

Изобретение относится к нефтепереработке и может быть использовано в процессе очистки продуктов каталитического риформинга от олефиновых углеводородов

Изобретение относится к катализатору, применяемому в способах гидроконверсии углеводородного сырья, которое содержит небольшие количества металлов
Изобретение относится к области нефтехимии, а конкретно к способам гидроочистки жидких углеводородных фракций

Изобретение относится к нефтехимической промышленности, конкретно к способу жидкофазного гидрирования непредельных углеводородов в составе легкой фракции пиролизной смолы
Изобретение относится к области химии, а именно к приготовлению катализаторов гидрообессеривания и деароматизации, используемых для процессов глубокой очистки моторных топлив от серосодержащих соединений и ароматических соединений
Изобретение относится к области нефтепереработки и нефтехимии, конкретно к способу облагораживания нефтяных дистиллятов
Изобретение относится к нефтеперерабатывающей и нефтехимической отраслям промышленности и может быть использовано, в частности, в производстве катализатора для процесса каталитической гидроочистки (обессеривания) бензиновых фракций, например прямогонного бензина
Изобретение относится к усовершенствованному способу гидропереработки углеводородного сырья, содержащего серу- и/или азотсодержащие загрязняющие вещества
Изобретение относится к способу очистки низших алканов от метанола путем контакта сырья с катализатором, содержащим оксид алюминия при повышенных температуре и давлении, характеризующемуся тем, что в качестве катализатора используют алюмоплатиновый катализатор и контакт проводят при температуре 180-400°С, давлении 1,5-4,0 МПа, объемной скорости подачи сырья 0,4÷4 ч-1 , объемном соотношении сырье : водород =1:(5÷900)

Изобретение относится к способу гидроочистки синтетической нефти, осуществляемому контактированием синтетической нефти, полученной посредством синтеза Фишера-Тропша и имеющей содержание углеводородов С9-21 90 массовых % или более, с катализатором гидроочистки, который представляет собой катализатор, который содержит носитель, содержащий одну или более твердых кислот, выбранных из сверхстабильного Y-(USY) цеолита, алюмосиликатного, циркониевосиликатного и алюмоборного окисного катализатора, и по меньшей мере один металл, выбранный из группы, состоящей из металлов, принадлежащих к группе VIII Периодической Таблицы, нанесенный на носитель, в присутствии водорода с регулированием температуры реакции при контактировании катализатора гидроочистки с синтетической нефтью, для гидроочистки синтетической нефти таким образом, что содержание (массовые %) С8 и более низких углеводородов в синтетической нефти после контакта составляет на 3-9 массовых % больше, чем перед контактом
Наверх