Испаритель для металлов и сплавов

 

Изобретение относится к устройствам для получения газофазным методом ультрадисперсных порошков и сплавов, а также для нанесения металлических покрытий в вакууме на металлические и неметаллические изделия. В испарителе, содержащем цилиндрический экран-нагреватель с отверстиями для выхода пара, торцевые крышки-тоководы, контейнер для расплава, контейнер расположен соосно внутри цилиндрического экрана-нагревателя и выполнен в виде отдельных соединенных между собой цилиндрических ячеек, образующих емкость для жидкого расплава. Оригинальность конструкции ячеек, их количество позволяют многократно увеличить поверхность испаряемой жидкости, получать высококачественные ультрадисперсные порошки с высокой производительностью технологического процесса. 1 ил.

Изобретение относится к устройствам, предназначенным для получения газофазным методом высокодисперсных и ультрадисперсных порошков металлов и сплавов как труднолетучих элементов (температура которых выше 2000oC), так и легколетучих элементов, а также для нанесения металлических покрытий в вакууме на металлическое, неметаллические изделия, предназначенные для использования в микроэлектронике, химической технологии, металлургии, электрохимии.

Известные виды конструкций испарителей предназначены для решения частных задач и сложны по конструктивному исполнению (1), характеру работы, предлагающей динамическое вращательное перемещение металлического расплава (2). Известные испарители имеют относительно небольшую поверхность испарения (3), что не позволяет гарантировать высокое качество продукции и производительность процесса. Наиболее близким по технической сущности и решаемой задаче к предлагаемому является испаритель (4), состоящий из цилиндрического экрана-нагревателя, съемного контейнера с перфорированной крышкой для испаряемого материала, торцевых крышек и тоководов.

После загрузки испаряемого материала в контейнер его нагрев и поддержание необходимой температуры осуществляется за счет теплового поверхностного излучения цилиндрического экрана нагревателя. Испарение материала происходит в поверхности расплава в контейнере. Пары испаряемого материала из контейнера через перфорированные отверстия крышки поступают в пространство между контейнером и стенками экрана-нагревателя и далее через его отверстия осаждают (конденсируются) на поверхности изделий. При использовании цилиндрического экрана-нагревателя исключается конденсация испаряемого материала на внутренние поверхности испарителя. Однако наличие открытой поверхности металлического расплава в контейнере допускает возможность образования окислов на его поверхности и вынос их с парами конденсата. Этот негативный процесс усиливается при образовании брызг при кипении жидкого расплава при нарушении параметров процесса испарения (температура, парциальное давление пара и др.). Качество конденсата, а в конечном итоге покрытия или порошка в этом случае резко ухудшается, как по химическому и гранулометрическому составу, как и по механическим свойствам.

Другим недостатком работы известного испарителя является невысокая производительность из-за ограниченной по площади поверхности испарения, из-за необходимости смены контейнера после испарения из него расплава, то есть остановки процесса.

В настоящей заявке поставлена задача разработать несложную, надежную в работе конструкцию испарителя с высокой производительностью, обеспечивающего высокое качество готовой продукции, с возможностью использования широкого диапазона испаряемого материала с различной температурой плавления.

Сущность предлагаемого изобретения и поставленная задача решаются тем, что в известном испарителе, содержащем цилиндрический экран-нагреватель с отверстиями для выхода пара, торцевые крышки-тоководы, контейнер для расплава, контейнер расположен соосно внутри цилиндрического экрана-нагревателя и выполнен в виде отдельных соединенных соосно между собой цилиндрических ячеек, образующих емкость для расплава, при чем каждая ячейка ограничена с боковых сторон перфорированными крышками и прокладками из пористого углеродистого материала и расположена на осевых элементах с внутренним каналом для подачи расплава в контейнер.

Соосное расположение контейнера, выполненного в цилиндрической форме, внутри цилиндрического экрана-нагревателя обеспечивает равномерный нагрев и поддержание заданной температуры всех элементов конструкции испарителя, которые находятся в контакте с жидким расплавом или парами испаряемого металла или сплава. Это обстоятельство обеспечивает надежность хода технологического процесса за счет устойчивости заданных параметров.

Контейнер в предлагаемом изобретении для испарителя выполнен в виде набора из отдельных цилиндрических ячеек, соединенных между собой по принципу сообщающих сосудов. Оригинальность конструкции цилиндрических ячеек, их компановка между собой позволяет неограниченно увеличивать площадь поверхности испарения жидкого расплава и регулировать ее в зависимости от требуемой производительности. В каждой ячейке при заполнении ее расплавом создаются по две поверхности испарения. Жидкий расплав поверхностью испарения в каждой ячейке контактирует с прокладкой, выполненной из тонкого пористого углеродистого материала, что исключает контакт жидкого расплава с атмосферой в испарителе и образование окислов, а следовательно, гарантирует высокое качество готовой продукции. Прокладка по сути дела выполняет роль фильтра продуктов испарения. Ячейки контейнера соединены между собой соосно на осевых элементах, внутренний канал которых и радиальные отверстия образуют единую систему "питания" контейнера жидким расплавом из автономного источника. По мере испарения расплава идет постоянная подпитка жидкого расплава в ячейки, поэтому контейнер остается полностью заполненным под некоторым избыточным давлением. Это обстоятельство исключает случайные "всплески" при повышении температуры металла, что особенно важно для испарения тугоплавких металлов или сплавов, а также вести технологический процесс в непрерывном режиме длительное время.

Таким образом, предлагаемый испаритель в технологическом процессе получения металлических порошков и при нанесении покрытий различного назначения обеспечивает следующие преимущества: значительное увеличение площади поверхности испаряемого расплава; длительную поверхность технологического процесса; надежность работы при испарении расплавов легко- и трудноплавких сталей или сплавов; предотвращение образования окислов на поверхности расплава; исключение образования и брызгоуноса при кипении расплава.

В конечном итоге при высокой производительности и широком ассортименте использования испаряемых расплавов конечная продукция имеет высокое качество (ультрамелкодисперсность частиц, высокая плотность и механическая стойкость порошков и покрытий из них).

Анализируя вышеизложенное, можно сделать вывод, что предлагаемая конструкция испарителя выражается совокупностью новых существенных признаков, характеризующих устройство, а именно, формой выполнения контейнера, формой выполнения и связей ячеек контейнера, взаимным расположением контейнера и экрана-нагревателя. То есть по сравнению с известным испарителем, признаки, характеризующие заявленную конструкцию испарителя, являются новыми существенными, что соответствует критерию "новизна".

Из научно-технической и патентной информации не выявлено использование совокупности взаимодействия и выполнения новых существенных признаков предлагаемого испарителя по их функциональному назначению и достигаемому результату, что соответствует критерию "изобретательский уровень".

На чертеже изображен общий вид испарителя с частичным продольным разрезом.

Испаритель для металлов и сплавов состоит из цилиндрического экрана-нагревателя 1 с торцовыми крышками 2, которые служат также токопроводами к экрану-нагревателю. В крышках по оси нагревателя вмонтированы изоляторы 3, для установки контейнера для жидкого расплава. Контейнер состоит из набора цилиндрический ячеек 4, которые с боковых сторон имеют перфорированные круглые крышки 5. Между перфорированной крышкой и радиальной выточкой ячейки установлена тонкая фильтрующая прокладка 6 из пористого углеродистого металла. Цилиндрическая ячейка, прокладки и перфорированные крышки, образующие емкость для расплава, установлены на осевые элементы 7, соединенных между собой гайкой 8, которая фиксирует плотное прилегание перфорированных крышек и прокладок к цилиндрической ячейке.

Осевые элементы каждой ячейки по оси контейнера сопряжены друг с другом внутренними отверстиями, образующих канал 9 для подачи жидкого расплава 11 в ячейки, а в целом в контейнер. Для выхода пара из испарителя цилиндрический экран-нагреватель имеет по образующей отверстие 10.

Все элементы конструкции испарителя (кроме изолятора 3) выполнены из электродного графита, а прокладка 6 - из графитизированной пористой ткани. Изоляторы выполнены из окиси бериллия. Наружная поверхность испарителя изолирована графитизированным войлоком.

Испаритель работает следующим образом.

Испаритель помещают в герметическую камеру (на чертеже не показана), удаляют из нее воздух, заполняют инертным газом (аргоном) до давления 1,33 103 Па. После этого подключают экран-нагреватель 1 к источнику питания (на чертеже не показан). Подачу жидкого расплава 11 в прогретый испаритель производят по каналу 9 через барометрическую трубу, связанной с устройством для расплавления испаряемого металла или сплава (на чертеже не показаны).

Нагрев и поддержание необходимой температуры цилиндрических ячеек 4, заполненных расплавом осуществляется за счет теплового поверхностного излучения цилиндрического экрана-нагревателя 1, который равномерно прогревает все детали контейнера и боковые крышки-тоководы 2 испарителя.

За счет создания давления столба жидкости в барометрической трубе в ячейках 4 контейнера расплав испаряемой поверхностью постоянно находится в контакте с углеродистой прокладкой 6, исключая возможность образования окислов металла и образования брызг расплавленного металла.

При прогреве контейнера до температуры испарения расплава пар, образующийся на развитой поверхности испарения в ячейках 4, проходит через макропары прокладки и фильтруется от различного рода примесей, включений, что гарантирует высокое качество порошков, покрытий и др. изделий.

В процессе испарения пары через поры прокладки 6 и отверстия перфорированных боковых крышек 5 заполняют пространство между контейнером и стенками экрана-нагревателя 1. При создании перепада давления избыток паров металла выходит через отверстия 10, смешивается с нейтральным газом, образуя ультрамелкодисперсный качественный порошок или тонкую плотную поверхность напыления.

Изготовлен экспериментальный испаритель. Для деталей испарителя использованы существующие доступные материалы: электродный графит, окись бериллия, графитизированная пористая ткань. Технология изготовления деталей испарителя и его сборка затруднений не вызывает.

Испаритель новой конструкции был испытан в опытах по получению порошков меди, олова, их сплавов, а также для получения медного покрытия на графитовой подложке. При использовании испарителя получены высококачественные порошки размером 0,5-8 мкм. Технологический процесс получения порошков стабильный и по длительности непрерывной работы и производительности практически не лимитируется конструктивными параметрами.

Формула изобретения

\ \\1 Испаритель для металлов и сплавов, содержащий цилиндрический экран-нагреватель с отверстиями для выхода пара, торцевые крышки - тоководы, контейнер для расплава, отличающийся тем, что контейнер расположен соосно внутри цилиндрического экрана-нагревателя и выполнен в виде отдельных соединенных соосно между собой цилиндрических ячеек, образующих емкость для расплава, причем каждая ячейка ограничена с боковых сторон перфорированными крышками и прокладками из пористого углеродистого материала и расположена на осевых элементах с внутренним каналом для подачи расплава в контейнер.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к микроэлектронике и направлено на обеспечение минимальной неравномерности покрытия подложки тонкой пленкой распыляемого материала

Изобретение относится к машиностроению, в частности к нанесению покрытий в вакууме, и может быть использовано при нанесении покрытий на режущий инструмент, изготовленный из сталей, твердых сплавов и керамических материалов
Изобретение относится к нанесению тонкопленочных покрытий в вакууме, в частности защитных, износостойких и декоративных покрытий на изделия из различных материалов
Изобретение относится к микроэлектронике, в частности к наноэлектронике, сканирующей туннельной и атомно-силовой микроскопии

Изобретение относится к области получения пленок и может быть использовано в медицине, оптике, микроэлектронике

Изобретение относится к технологии нанесения вакуумно-поазменных покрытий и может использоваться в микроэлектронике, машиностроении

Изобретение относится к технике изготовления пьезоэлектрических резонаторов путем покрытия кристаллических пластин вакуумным испарением металлов при управлении и регулировании их осаждением

Изобретение относится к плазменной технике, в частности к способам вакуумной металлизации поверхности и синтеза неорганических пленок в пучково-плазменном разряде

Изобретение относится к области получения высокотемпературных материалов, используемых для защиты от окисления и газовой коррозии и в качестве защитных покрытий термонагруженных деталей газовых турбин и двигателей внутреннего сгорания

Изобретение относится к нанесению покрытий в вакууме и может быть использовано для получения толстых пленок металлов при изготовлении, например, разводки коммутационных плат

Изобретение относится к материаловедению, а именно к способам изготовления преимущественно износостойких, прочных и жаропрочных материалов на металлической, металлокерамической или полимерной основе, а также изделий из этих материалов

Изобретение относится к полупроводниковой области техники и может быть использовано в молекулярно-лучевой эпитаксии для снижения плотности дефектов в эпитаксиальных структурах

Изобретение относится к устройствам взрывного испарения с резистивным нагревом для испарения металлов

Изобретение относится к технологии и оборудованию для получения эпитаксиальных структур кремния методом осаждения из газовой фазы

Изобретение относится к способам вакуумного конденсационного напыления покрытий на металлические и металлсодержащие поверхности подложки термическим испарением многокомпонентных материалов

Изобретение относится к устройствам для получения газофазным методом высоко- и ультрадисперсных порошков металлов и сплавов, а также для нанесения металлических покрытий в вакууме на металлические и неметаллические изделия
Наверх