Тепловой аккумулятор

 

Изобретение предназначено для нагрева воды, водяного пара, паровоздушных и парогазовых смесей в энергетической и химической промышленности, в коммунальном хозяйстве, для пиковых электростанций, при совместной работе с ветроэнергетическими установками и микроГЭС. Зарядка аккумулятора осуществляется с помощью индуктора путем плавления двух полностью смешивающихся в расплавленном состоянии сплавов с разной плотностью. В качестве плавящихся веществ используются заэвтектические сплавы Al - Si и более плотные и легкоплавкие сплавы на основе Ga, In, Sn, Bi. После завершения процесса зарядки индуктор переводится в положение режима ожидания, разрядка осуществляется жидким теплоносителем с помощью металлического теплообменника, размещенного в слое теплоизоляции вне индуктора и/или с помощью индуктора в положении последнего, соответствующего стадии зарядки. Изобретение повышает мощность аккумулятора. 3 з.п.ф-лы, 2 ил.

Изобретение относится к энергетике, энергомашиностроению, высокотемпературным источникам тепла для технологических и бытовых целей и может быть использовано, например, для нагрева воды, водяного пара, паровоздушных и парогазовых смесей в энергетической и химической промышленности, в коммунальном хозяйстве, для пиковых электростанций, при совместной работе с ветроэнергетическими установками и микроГЭС.

Известен нагреватель текущей среды, содержащий герметичный корпус, снабженный слоем теплоизоляции, подводящими и отводящими патрубками, расположенной коаксиально в корпусе теплоаккумулирующей насадкой, обогреваемой индуктором, установленный на подводящем патрубке выносной подогреватель газа в виде электрообогреваемого теплового аккумулятора и тепловые трубы, частично размещенные в слое теплоизоляции и связанные с тепловым аккумулятором [1].

Недостатком этого нагревателя является небольшая удельная тепловая емкость аккумулирующей среды.

Наиболее близким к предлагаемому является тепловой аккумулятор, содержащий металлический корпус, снабженный внутри слоем теплоизоляции. В корпусе установлен стакан, частично заполненный двумя аккумулирующими, не смешивающимися между собой веществами с различной плотностью, преимущественно алюминием и свинцом. Теплообменник зарядки-разрядки расположен ниже границы раздела аккумулирующих веществ в слое вещества с большой плотностью. К корпусу подключена емкость, заполненная инертным газом [2].

Недостатками этого аккумулятора являются недостаточная удельная емкость и невозможность зарядки от электрической сети.

Целью изобретения является повышение тепловой мощности аккумулятора.

Указанная цель достигается тем, что в качестве вещества с меньшей плотностью используется сплав на основе алюминия с кремнием с содержанием кремния 12,5-95 мас. %. Вместо экологически опасного свинца используется сплав на основе металлов, выбранных их группы Ga, In, Sn, Bi. Для уменьшения окисляемости Al-Si-расплава с поверхности может быть использован защитный флюс.

Для зарядки аккумулятора используется индуктор с магнитопроводом, расположенный в слое теплоизоляции между стаканом и корпусом. Однако после окончания зарядки индуктор выводится из слоя теплоизоляции и аккумулятор переходит в режим ожидания. Для съема запасенного тепла в предлагаемой конструкции используется дополнительный теплообменник, расположенный также в слое теплоизоляции между корпусом и индуктором. При этом сохраняется возможность съема тепла и через систему охлаждения индуктора, если индуктор не выводить или выводить частично из слоя теплоизоляции.

Применение в качестве вещества с большей плотностью легкоплавкого сплава на основе металлов, выбранных из группы Ga, In, Sn, Bi, исключает возникновение опасных напряжений в Al-Si-сплаве при циклических процессах плавление - кристаллизация. Выбранные металлы в отличие от свинца в известной конструкции полностью смешиваются с Al-Si-сплавами в области температур жидкого состояния Al-Si-сплавов. В области температур ниже эвтектической температуры 577oC в системе Al-Si выбранные металлы Ga, In, Sn, Bi практически не растворяются в алюминии и кремнии и не образуют с ними каких-либо соединений, а их более низкие собственные температуры плавлений обеспечивают присутствие жидкой фазы, за счет которой происходит снятие напряжений как в самом Al-Si-сплаве, так и между ним с внутренними стенками стакана.

Зарядка аккумулятора осуществляется с помощью индуктора с магнитопроводом, расположенных коаксиально относительно стакана с плавящимися веществами. После окончания процесса зарядки в предлагаемой конструкции индуктор выводится из рабочего положения и тепловой аккумулятор переводится в режим ожидания. В частности, удобно опускать индуктор так, чтобы его верхний уровень был ниже дна стакана. В результате обеспечиваются наилучшие условия для сохранения аккумулированного тепла.

Разрядка теплового аккумулятора осуществляется с помощью теплообменника с жидким теплоносителем, расположенного в слое теплоизоляции между корпусом и индуктором. Подвижность индуктора позволяет также использовать его систему охлаждения для разрядки аккумулятора с плавным регулированием количества снимаемого тепла: практически нулевой съем через индуктор в его полностью выведенном положении и повышенный при введенном положении индуктора.

На фиг. 1 изображен общий вид предложенного теплового аккумулятора в начальном периоде режима зарядки. Тепловой аккумулятор содержит металлический корпус 1, в который помещена емкость 2 в виде стакана с крышкой из теплоизоляционного огнеупорного материала, например из высокоглиноземистого муллитокорундового огнеупора, магнезиального бетона и т.п. Между наружной стенкой емкости 2 и корпусом 1 установлен медный водоохлаждаемый индуктор 3 в его рабочем положении, магнитопровод 4, выполненный из листов трансформаторной стали и расположенный вокруг индуктора 3, и теплообменник 5. Остальное пространство между корпусом 1 и стаканом 2 заполнено теплоизоляционным материалом. Стакан 2 частично заполнен сплавом на основе заэвтектического сплава алюминия с кремнием 6 и сплавом большей плотности 7 на основе металлов, выбранных из группы, содержащей Ga, In, Sn, Bi. Поверхность расплава 6 защищена от окисления слоем расплавленного флюса. В зависимости от выбранной рабочей температуры в качестве вещества с меньшей плотностью применяется сплав алюминия 6 с определенным содержанием кремния. Для теплового аккумулятора с рабочей температурой 577oC используется сплав с 12,7 мас.% кремния. Для теплового аккумулятора с рабочей температурой 820oC используется сплав с 30 мас. % кремния. Для теплового аккумулятора с рабочей температурой 1400oC используется сплав с 95 мас.% кремния. С увеличением рабочей температуры и соответственно с увеличением содержания кремния увеличивается удельная теплота плавления Al-Si-сплава. Для составов с 12,7, 30 и 95 мас.% кремния соответствующие величины удельных теплот плавления составляют 572, 809 и 1704 кДж/кг, что в 1,44, 2,04 и 4,3 раза превышает удельную теплоту плавления алюминия.

Работает тепловой аккумулятор следующим образом.

Зарядка аккумулятора производится включением индуктора 3 в электрическую сеть переменного тока. При этом тепло выделяется непосредственно в веществах 6, 7 при их интенсивном перемешивании. После полного расплавления веществ 6, 7 происходит их взаимное растворение с образованием гомогенного жидкого раствора 8. На этом процесс зарядки заканчивается, индуктор переводится из рабочего положения в слое теплоизоляции в положение, соответствующее режиму ожидания.

На фиг. 2 показан вариант общего вида теплового аккумулятора в режиме ожидания. Разрядка в основном производится пропусканием жидкого теплоносителя через теплообменник 5, размещенный в слое теплоизоляции и/или через индуктор, находящийся в положении, соответствующем стадии зарядки. Процесс разрядки сопровождается вначале кристаллизацией кремния, последним затвердевает сплав, близкий по содержанию кремния к эвтектическому составу с 12,5 мас. % Si. Окончание кристаллизации является оптимальным моментом конца разрядки. При продолжении разрядки происходит быстрое снижение температуры аккумулирующего вещества 6 в твердом состоянии. Элементы более плотного вещества 7 за счет отсутствия растворимости в твердых Al и Si и более низкой собственной температуры плавления продолжают при этом на протяжении значительного температурного интервала оставаться в расплавленном состоянии, что является гарантией от разрушения стакана при глубоких термокачках.

Техническое преимущество предлагаемого аккумулятора в сравнении с прототипом заключается в увеличении тепловой емкости при той же массе аккумулирующей среды.

Формула изобретения

1. Тепловой аккумулятор, содержащий корпус и установленный в нем стакан из теплоизоляционного материала, частично заполненный двумя плавящимися теплоаккумулирующими веществами с различной плотностью, а также теплообменник разрядки, отличающийся тем, что он снабжен индуктором с магнитопроводом, размещенным в дополнительно установленном слое теплоизоляции вокруг стакана с обеспечением изменения положения относительно упомянутого слоя теплоизоляции в режиме ожидания, стакан снабжен крышкой из теплоизолированного огнеупорного материала, теплообменник разрядки размещен в слое теплоизоляции вне индуктора и снабжен жидким теплоносителем, а в качестве плавящегося вещества меньшей плотности выбирается вещество с более высокой температурой плавления, чем вещество большей плотности, и полностью смешивающееся с последним в расплавленном состоянии.

2. Аккумулятор по п.1, отличающийся тем, что в качестве вещества с меньшей плотностью используется сплав на основе заэвтектического сплава алюминия с кремнием.

3. Аккумулятор по пп.1 и 2, отличающийся тем, что в качестве вещества с большей плотностью используется сплав на основе металлов, полностью смешивающихся с Al-Si сплавами в области температур их жидкого состояния, практически не растворяющиеся в твердых алюминии и кремнии и не образующие с ними каких-либо соединений.

4. Аккумулятор по пп.1 - 3, отличающийся тем, что в качестве вещества с большей плотностью используется сплав на основе металлов, выбранных из группы, содержащей галлий, индий, олово, висмут.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к тепловым аккумуляторам и может быть использовано в технологических устройствах, потребляющих тепловую энергию при неравномерном ее получении или расходовании, в частности, в системе предпусковой подготовки транспортных средств (ТС) при пониженных температурах окружающего воздуха

Изобретение относится к тепловым аккумуляторам и может быть использовано в технических устройствах, потребляющих тепловую энергию при неравномерном ее получении или расходовании, в частности в системе предпусковой подготовки транспортных средств (ТС) при пониженных температурах окружающего воздуха

Изобретение относится к теплообменным аппаратам и может использоваться, в частности, для предпускового прогрева двигателей внутреннего сгорания в холодное время года, запасения тепла от энергетических и бытовых котлоагрегатов и пр

Изобретение относится к теплообменным аппаратам и может использоваться, в частности, для предпускового прогрева двигателей внутреннего сгорания в холодное время года

Изобретение относится к теплотехнике, в частности к тепловым аккумуляторам регенеративным теплообменникам, предназначенным для накопления, хранения и отдачи тепла

Изобретение относится к области транспортных аппаратов, предназначенных для временного обеспечения в объеме рабочей камеры заданных режимов термостатирования за счет преобразования энергии теплового потока, проходящего теплоизоляцию камеры, в скрытую теплоту фазового перехода рабочего вещества

Изобретение относится к нагревательным установкам

Изобретение относится к тепловым аккумуляторам и может быть использовано в устройствах, потребляющих теплоту при неравномерном ее получении или расходовании, в частности в системе предпусковой подготовки транспортных средств и их силовых установок

Изобретение относится к двухслойным системам аккумулирования тепловой энергии, например энергии Солнца, в которых поглощение тепла осуществляется аккумулирующим слоем 24 и далее посредством теплоотдающего слоя 22 передается потребителю через трубу 30

Изобретение относится к теплотехнике, к тепловым аккумуляторам, предназначенным для накопления, хранения и отдачи тепла, в частности для подогрева теплоносителя при пуске в системе охлаждения автомобильного двигателя

Изобретение относится к теплотехнике, в частности к тепловым аккумуляторам, предназначенным для накопления, хранения и отдачи тепла

Изобретение относится к теплотехнике, к тепловым аккумуляторам, предназначенным для накопления, хранения и отдачи тепла, в частности для подогрева при пуске автомобильного двигателя

Изобретение относится к тепловым аккумуляторам и может быть использовано в технических устройствах, потребляющих тепловую энергию при неравномерном ее получении или расходовании, в частности в системе предпусковой подготовки транспортных средств (ТС) при пониженных температурах окружающего воздуха

Изобретение относится к высокотемпературным электронагревательным устройствам для нагрева газа и может быть использовано в космической технике для нагрева компонентов топлива в ракетах и космических двигателях, в самолетостроении и других отраслях промышленности

Изобретение относится к теплоэнергетике и теплообменной технике
Наверх