Способ определения коэффициентов передаточных функций линейных динамических объектов

 

Изобретение относится к области автоматики, а именно к измерительной технике и автоматическому регулированию, и может быть использовано при определении коэффициентов числителя передаточных функций динамических объектов сложных структур, например, при проектировании и настройке систем регулирования летательным аппаратом, газотурбинным двигателем и т.д. Техническим результатом является повышение точности и быстродействия при определении коэффициентов числителя передаточной функции. Технический результат достигается за счет того, что в момент завершения переходного процесса сигнала на выходе объекта y( t) по признаку |yуст-y(t)| д измеряют длительность переходного процесса Т и формируют специальную функцию Zi(t). На втором интервале времени t = T формируют свободное движение объекта для чего с входа объекта при завершении переходного процесса снимают единичный ступенчатый сигнал и определяют коэффициент а для вычисления bi(i = 2 oC m) вычисляют интеграл Zi(t) и определяют bi по формуле . 3 ил.

Изобретение относится к области автоматики, а именно к измерительной технике и автоматическому регулированию, и может быть использовано для определения коэффициентов передаточных функций динамических объектов сложных структур, например, при проектировании и настройке систем регулирования летательным аппаратом газотурбинным двигателем и т.д.

Известны способы идентификации линейных динамических объектов, основанные на формировании спектральной плотности входного сигнала исследуемого объекта и взаимной спектральной плотности входного и выходного сигналов исследуемого объекта [1].

Основным недостатком известных спектральных методов идентификации является некорректность их применения для идентификации динамических объектов в тех случаях, когда наблюдаемые сигналы наряду со случайными составляющими содержат неслучайные гармонические составляющие, чем обычно характеризуются сигналы, зафиксированные в режиме нормальной эксплуатации. В этом случае сигналы спектральных плотностей характеризуются наличием узких пиков и нулевых провалов, и получение статистических оценок спектральных плотностей по оценкам сигнала корреляционной функции на конечном интервале наблюдений путем непосредственного применения преобразования Фурье не дает желаемых результатов, так как в этом случае дисперсии оценок сигналов спектральных плотностей имеют тот же порядок, что и сами спектральные плотности, что приводит к большим погрешностям [1] . Кроме того, указанные способы весьма критичны к помехам, присутствующим одновременно во входном и выходном сигналах.

Известен также способ [2] определения коэффициентов передаточных функций динамических объектов путем подачи на вход объекта время-степенных пробных сигналов в виде последовательности одиночных импульсов. По этому способу можно определить коэффициенты передаточных функций более высокого порядка.

Однако реализация этого способа требует значительных временных затрат, что связано с экспериментальным определением всех коэффициентов k время-степенных пробных сигналов вх = ktk и с необходимостью последовательной настройки модели объекта. Кроме того, на точность определения параметров передаточных функций влияет настройка модели.

Наиболее близким к предлагаемому изобретению является способ определения параметров передаточных функций линейных динамических объектов путем подачи тестового сигнала, стремящегося к установившемуся значению, на вход линейного динамического объекта и интегрирования его выходного сигнала, измерения интервалов времени t1 и t2 от момента подачи тестового сигнала величины A до момента достижения уровней J1 и J2 соответственно и определения постоянной времени и коэффициента передачи линейного динамического объекта Этот способ непригоден для определения параметров передаточных функций объектов второго и более высоких порядков.

Задачей, на решение которой направлено заявляемое изобретение, является повышение точности и быстродействия при определении коэффициентов числителя передаточных функций.

Поставленная задача решается тем, что в способе определения параметров передаточных функций линейных динамических объектов путем подачи на вход объекта исследования единичного ступенчатого сигнала и измерения интервала времени от момента подачи тестового сигнала величины A до момента достижения порогового значения, в отличие от прототипа в момент завершения переходного процесса сигнала на выходе объекта y(t) по признаку |yуст-y(t)| д (где yуст - установившееся значение выходного сигнала; д - допустимая погрешность завершения свободных колебаний), измеряют длительность переходного процесса T и, учитывая, что изображение выходного сигнала y(t) можно записать в виде где

m - порядок числителя, формируют специальную функцию Zi(t), представляющую собой интеграл от разности [y(t)-yо(t)]

при этом функция yо(t) выражается через Yуст и свободные колебания объекта

где
функция, определяющая свободные колебания объекта, которую определяют на втором интервале времени t=T, когда формируют свободное движение объекта , для чего с входа объекта при завершении переходного процесса снимают единичный ступенчатый сигнал. Изображение функции Z1(t) можно записать в виде
. (4)
Из выражения (4) следует, что операция интегрирования понижает на единицу порядки числителей изображений yi(p) и yl(p). Следовательно, установившееся значение функции Z1(t) будет определяться составляющей


Из (5) следует, что коэффициент

а для вычисления bi i=2 oC m вычисляют интеграл Zi(t), в подинтегральном выражении которого вместо y(t) подставляют Z(i-1)(t), а вместо

и определяют bi по формуле

При bi= 0 процесс вычислений завершается. При этом теоретически не существует ограничения на порядок числителя исследуемых объектов и не требуется предварительного значения структуры объекта. Кроме того, время эксперимента равно 2T, что позволяет сэкономить время определения коэффициентов для объектов с высоким порядком числителя.

На фиг. 1 приведена структурная схема устройства, реализующего предлагаемый способ; на фиг. 2 - иллюстрация процессов определения коэффициентов полинома числителя; на фиг. 3 - блок-схема программы вычислений коэффициентов полинома числителя, реализуемых ЭВМ.

Устройство содержит формирователь входного сигнала 1, исследуемый объект 2, аналого-цифровой преобразователь 3, ЭВМ 4.

Как видно на фиг. 2 и фиг. 3, при определении коэффициентов bi на первом временном интервале определяется время завершения переходного процесса T и через равные промежутки времени t, зависящее от частоты квантования, в память ЭВМ заносятся значения отклика объекта y(t) на воздействие единичного ступенчатого сигнала. На втором интервале времени формируется свободное движение объекта для чего с входа объекта снимается единичный ступенчатый сигнал. Функция yсв(t) так же, как y(t) заносится в память ЭВМ с той же частотой квантования. Далее осуществляется операция интегрирования, вычисляется интеграл Zi(t) и определяется коэффициент b1

Затем вычисляют коэффициент bi i=2 oC m, для чего определяют интеграл Z1(t), в подинтегральном выражении которого вместо y(t) подставляют Z(i-1)(t), а вместо


Рассмотрим реализацию данного способа на примере объекта с передаточной функцией вида

где
- постоянная времени;
- коэффициент демпфирования.

Определим b0, b1, b2. Отклик объекта на входное воздействие в виде ступенчатого сигнала X(t)=A l(t) запишется в следующем виде:

Здесь = / - коэффициент, характеризующий скорость затухания переходного процесса; w0- частота колебаний объекта. Сигнал y(t) имеет 3 составляющие
y(t)=y2(t)+y1(t)+y0(t),
где

Сигналы y2(t), y1(t), y0(t) соответственно отражают составляющие b2p2/A(p), b1p/A(p) и b0/A(p) передаточной функции объекта. Момент завершения переходного процесса T с определенной погрешностью определяется по условию
|yуст-y(t)| д.
Очевидно, что y1(T)=0, y2(T)=0 и y0(T)=Ab0. Тогда y(T)=Ab0. Находим: b0= y(T)/A. Для определения b1 вычисляем интеграл

Сигнал Z1(t) формируется путем интегрирования разности [y(t)-yуст+yсв.(t)] c помощью ЭВМ. Свободное движение было возбуждено в динамическом объекте при начальном условии yсв.(0)=yуст=b0.

По результатам интегрирования имеем: Z1(T)=Ab1/T. Находим: b1=Z1(T)/A. Для определения b2 вычисляем интеграл

где

Тогда

Сигнал Z2(t) формировался путем интегрирования разности [Z1(t)-Z1(T)+Zlcв.(t)] с помощью ЭВМ. Свободное движение было возбуждено в объекте при начальном условии Z1св.(0)= b1/T. По результатам интегрирования имеем Z2(T)=Ab2/T2. Находим b2=Z2(T)T2/A. Найдем b3

где

Тогда

Из этого получаем, что b3=0. Отсюда следует, что порядок числителя m=2.

Таким образом, предлагаемый способ позволяет автоматически определять порядок числителя и вычислять его коэффициенты с большей точностью и быстродействием.

Источники информации
1. Пугачев В.С. Теория случайных функций и ее применение к задачам автоматического управления, М. 1957, с. 395-403, 592-587.

2. Авторское свидетельство СССР N 696416 МКл. G 05 B 23/00, 1979.

3. Авторское свидетельство СССР N 661511 МКл. G 05 B 23/00, 1979 (прототип).


Формула изобретения

Способ определения коэффициентов передаточных функций линейных динамических объектов путем подачи на вход объекта исследования единичного ступенчатого сигнала и измерения интервала времени от момента подачи тестового сигнала величины A до момента достижения порогового значения, отличающийся тем, что в момент завершения переходного процесса сигнала на выходе объекта y(t) по признаку (где yуст - установившееся значение выходного сигнала, д - допустимая погрешность завершения свободных колебаний) измеряют длительность переходного процесса T и, учитывая, что изображение выходного сигнала y(t) можно записать в виде

где

m - порядок числителя, формируют специальную функцию Zi(t), представляющую собой интеграл от разности [Y(t)-Yo(t)]

при этом функция yo(t) выражается через yуст и свободные колебания объекта

где функция, определяющая свободные колебания объекта, которую определяют на втором интервале времени t =T, когда формируют свободное движение объекта для чего со входа объекта при завершении переходного процесса снимают единичный ступенчатый сигнал и определяют коэффициент

где Z1уст = Z1 (T), а для вычисления bi(i = 2oCm) вычисляют интервал Zi(t), в подинтегральном выражении которого вместо y(t) представляют Zi-1(t), а вместо

и определяют bi по формуле
л

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к области комплексного контроля основных датчиков пижотажно-навигационной информации, а именно построителя курсовертикали и датчиков угловых скоростей летательного аппарата (ЛА)

Изобретение относится к радиотехнике, а именно к электронным схемам общего назначения и в частности может использоваться при определении вида технического состояния цифровых устройств с обнаружением и локализацией различных дефектов

Изобретение относится к области техники измерений, конкретно к способам определения остаточной емкости свинцового аккумулятора (СА)

Изобретение относится к контрольно-измерительной технике

Изобретение относится к контролю и диагностированию систем автоматического управления и их элементов и может быть использовано для диагностирования линейных динамических объектов, состоящих из апериодических звеньев первого порядка

Изобретение относится к сложным изделиям автоматики, вычислительной техники и может быть использовано в управляющих вычислительных комплексах, информационно-управляющих комплексах и автоматизированных системах управления технологическими процессами

Изобретение относится к области управления и регулирования и, в частности к области контроля и управления автоматизированными комплексами с использованием электрических сигналов в роботизированных производствах

Изобретение относится к автоматизированным системам контроля, в частности к системам контроля цифроаналоговых, аналого - цифровых, цифровых и аналоговых узлов радиоэлектронной аппаратуры (РЭА)

Изобретение относится к комплексному контролю исправности датчиков системы автоматического управления самолета

Изобретение относится к области автоматики, а именно к измерительной технике и автоматическому регулированию

Изобретение относится к технической кибернетике и позволяет сократить время локализации отказа при эксплуатации пневмогидравлических объектов (О), что и является достигаемым техническим результатом

Изобретение относится к автоматическим системам управления на базе вычислительной техники

Изобретение относится к контролю и диагностированию систем автоматического управления и их элементов

Изобретение относится к системам управления технологическими процессами

Изобретение относится к моделированию в авиационной технике и может быть использовано для определения технического уровня радиоэлектронных систем

Изобретение относится к контролю и диагностированию систем автоматического управления (АСУ)
Изобретение относится к области коммунального хозяйства и может быть использовано при диспетчерском контроле и управлении системами коммунального хозяйства
Наверх