Способ определения характеристик сельскохозяйственных материалов и пищевых продуктов

 

Изобретение относится к области сельского хозяйства, а именно к тепловым испытаниям биологических материалов при ВЧ- и СВЧ-нагреве. Техническим результатом изобретения является повышение точности и информативности определения характеристик сельскохозяйственных материалов и пищевых продуктов. Данный результат достигается тем, что при воздействии на образец испытуемого материала электромагнитным полем высокой или сверхвысокой частоты информацию о теплофизических характеристиках получают, регистрируя изменения температуры в точках, расположенных внутри и на поверхности материала в зоне нагрева, и плотности теплового потока у поверхности образца после прекращения электромагнитного воздействия. 1 табл., 1 ил.

Изобретение относится к области сельского хозяйства, а именно к тепловым испытаниям биологических материалов при ВЧ- и СВЧ-нагреве и может применяться в сельском хозяйстве и пищевой промышленности.

Известны способы определения характеристик с.-х. материалов и пищевых продуктов (Рогов И. А. Электрофизические методы обработки пищевых продуктов. - М. : Агропромиздат, 1988.). Однако они не позволяют найти все характеристики, входящие в дифференциальное уравнение теплопроводности и граничные условия к нему, что в свою очередь затрудняет определение технологических режимов обработки с.-х. материалов и пищевых продуктов.

Из известных технических решений наиболее близким по сущности является способ определения теплофизических свойств (см. а.с. СССР N 1286977, МКИ A 01 G 7/00, 1987 г.). Этот способ позволяет определить характеристики с.-х. материалов с помощью СВЧ-нагрева материала.

Однако существующий способ не позволяет определить коэффициенты теплоотдачи, объемной теплоемкости и теплопроводности. Кроме того, коэффициент температуропроводности определяется по сути дела по одной точке, что снижает его точность, а вычисление по нескольким значениям температуры весьма громоздко. Это приводит к неточности при расчете доз СВЧ-воздействия на биообъекты и определении необходимых технологических режимов.

Задачей предлагаемого изобретения является повышение точности и информативности определения характеристик с.-х. материалов и пищевых продуктов.

В результате использования предлагаемого изобретения достигается определение необходимых характеристик для расчета доз СВЧ-воздействия на с.-х. материалы и пищевые продукты и других необходимых технологических параметров, необходимых для СВЧ-обработки.

Вышеуказанный технический результат достигается тем, что при воздействии на образец испытуемого материала электромагнитным полем высокой или сверхвысокой частоты информацию о теплофизических характеристиках получают, регистрируя изменения температуры в точках, расположенных внутри и на поверхности материала в зоне нагрева, и плотности теплового потока у поверхности образца после прекращения электромагнитного воздействия.

Сущность изобретения поясняется чертежом, на котором представлены зависимости температуры (кривая 1) почвы от времени остывания и удельной плотности теплового потока (кривая 2) у поверхности почвы (компост N 5, состав в %: торф 20, суглинок 60, навоз 20; влагосодержание u = 22%, плотность 1200 кг/м3). Здесь t0=20oC, x1=0,02 м, x2=0,06 м.

Пример конкретного исполнения.

Образец почвы погружали в измерительную ячейку камеры опытной установки, которая содержит: СВЧ-генератор мощностью 0,5 кВт (2450 МГц), три термопары, тепломер, измеритель удельного теплового потока и измеритель температуры. Раскрыв рупорного излучателя расположен над образцом (почвой) и установлен на высоте 5 см над ее поверхностью. Установка позволяет измерять температуру в трех точках: на поверхности, на глубинах 0,02 и 0,06 м и удельную плотность теплового потока на поверхности материала непосредственно в зоне действия энергии поля. Ширина и длина образца почвы выбрана таким образом, чтобы энергия ЭМП СВЧ полностью поглощалась образцом и не происходило отражения электромагнитной волны от дна камеры. Измерительная ячейка камеры теплоизолирована от окружающей среды с помощью адиабатической оболочки. Термопары и тепломер установлены по одной линии перпендикулярно раскрыву излучателя. Выбранные конструктивные параметры измерительной установки и время СВЧ-воздействия позволяют считать исследуемый образец материала полубесконечной средой. На измерительной установке были сняты зависимости температуры и удельного теплового потока от времени для почвы (см. чертеж).

Система уравнений для определения характеристик a, , c имеет вид Из системы (1) видно, что для определения теплофизических характеристик необходимо на стадии остывания материала получить экспериментальные зависимости t(0,) = f(), q() = f(). Зависимость температуры поверхности материала достаточно точно может быть описана первым уравнением системы (1). Зависимость удельного теплового потока от времени можно снять, например с помощью тепломера с измерителем теплового потока ИПТ-9.

Алгоритм определения следующий: вначале путем аппроксимации полиномом второго порядка экспериментальной зависимости t(0,) = f() получим коэффициенты c0, c1, и c2; после чего находим коэффициент функции начального распределения температуры k1 на стадии остывания материала; затем рассчитываем значения коэффициентов температуропроводности a и критерия Био Bi, для определения коэффициента теплопроводности по уравнению теплоотдачи вычисляем коэффициент теплоотдачи и в заключение - объемную теплоемкость материала c. Пример численного определения теплофизических характеристик (a, , , c) 1. Экспериментальную кривую 1 функции температуры от времени на стадии остывания аппроксимируем полиномом второй степени, который примет вид откуда c0=tn=50,38oC, при tc=20oC, c1=0,42327, c2=0,00362.

2. Из начальных условий x > 0 по экспериментальной зависимости температуры от времени в начале стадии остывания (или конце стадии СВЧ-нагрева) находим tn и k1 по результатам измерения температуры в материале с координатами x1 и x2. Коэффициент функции начального распределения температуры k1 определяем по формуле 3. Температуропроводность а находим из системы (1) с учетом экспериментальной зависимости температуры от времени на стадии остывания и ее аппроксимации согласно п.1, тогда
Критерий (число) Bi определяем из системы уравнений (1) по выражению

5. Коэффициент теплоотдачи для точки с мгновенным значением времени = 210 c) находим из уравнения теплоотдачи

6. Коэффициент теплопроводности вычисляем по соотношению

7. Объемную теплоемкость, c определяем по уравнению

Сравнительный анализ экспериментальных данных, полученных по новому способу и по известному способу (классической методике Чернышенко В.Г., Фоломеев В.А., Гарбуз В.М. Теплофизические характеристики тепличных почв. - Механизация и электрификация социалистического сельского хозяйства, 1979, N 2, стр. 19-20. ) для тепличной почвы (компост N 5), показывает их хорошую сопоставимость. Результаты представлены в таблице.

Предложен комплексный способ определения теплофизических характеристик (a, , , c) после СВЧ-обработки, которые с учетом электрофизических характеристик (k, W), позволяет описывать как стадию СВЧ-нагрева так и последующего остывания в широком диапазоне изменения температуры и влажности для сельскохозяйственных материалов и пищевых продуктов.


Формула изобретения

Способ определения характеристик сельскохозяйственных материалов и пищевых продуктов, заключающийся в том, что образец нагревают, воздействуя на него энергией электромагнитного поля высокой или сверхвысокой частоты в направлении от поверхности в глубину образца, а после прекращения действия поля скачкообразно изменяют температуру поверхности, поддерживая ее постоянной, и регистрируют изменение температуры образца во времени на стадии остывания, на основании чего судят о теплофизических свойствах образца, отличающийся тем, что после прекращения воздействия электромагнитного поля регистрируют вначале температуру объекта в зоне нагрева на двух глубинах, а затем изменение во времени у поверхности образца температуры и плотности теплового потока.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к медицине, а конкретно - к технике дифференциальной диагностики асептического некроза головки бедренной кости и деформирующего артроза тазобедренного сустава (коксартроза), и может быть использовано в практической медицине специалистами хирургами-ортопедами, а также врачами-лаборантами клинико-диагностических и биохимических лабораторий
Изобретение относится к медицине, точнее к методам лучевой диагностики и может найти применение в клинике нервных болезней
Изобретение относится к медицине, а именно к способам диагностики заболеваний слизистой оболочки полости рта

Изобретение относится к медицине и к тем областям науки и техники, которые занимаются онкологией и касаются определения химического состава злокачественных опухолей
Изобретение относится к медицине, в частности к онкологии, и может быть использован при диагностике злокачественных новообразований

Изобретение относится к области медицинской техники получения изображений, в частности изображений твердых и мягких биотканей в стоматологии

Изобретение относится к системе и процессу для определения композиционного состава многокомпонентных смесей, которые являются либо неподвижными, либо текущими в трубах или трубопроводах, где компоненты имеют различные свойства полного электрического сопротивления и могут, или не могут, присутствовать в различных состояниях

Изобретение относится к системе и процессу для определения композиционного состава многокомпонентных смесей, которые являются либо неподвижными, либо текущими в трубах или трубопроводах, где компоненты имеют различные свойства полного электрического сопротивления и могут, или не могут, присутствовать в различных состояниях

Изобретение относится к технике обнаружения инородных образований в почве, а конкретно мин, в частности противопехотных

Изобретение относится к области подповерхностной радиолокации, а именно к устройствам определения расположения и формы неоднородностей и включений в строительных конструкциях и сооружениях
Изобретение относится к измерительной технике, в частности к контролю поверхности металлических сооружений и объектов и может быть использовано для обнаружения и контроля развития дефектов на поверхностях металлических сооружений и объектов, установленных в коррозионных средах различной степени агрессивности в условиях подземного, атмосферного, морского или речного воздействия, в частности для обнаружения и контроля развития трещин на покрытых изоляций поверхностях нефте- или газопроводов

Изобретение относится к технике измерения диэлектрических свойств материалов, например влажности, и может быть использовано в сверхвысокочастотной влагометрии неводных жидкостей, например гликолей, ацетона, аминов и др

Изобретение относится к учету и контролю качества нефти, транспортируемой по трубопроводу, позволяющее учитывать в денежном выражении качество нефти, которое при транспортировке в трубопроводе при смешении нефти, сдаваемой разными производителями, а следовательно, разного качества, приводит к изменению качественных характеристик нефти при сдаче ее потребителям

Изобретение относится к области сельского хозяйства, а именно к тепловым испытаниям биологических материалов при ВЧ- и СВЧ-нагреве и может применяться в сельском хозяйстве и пищевой промышленности
Наверх