Способ разделения заряженных частиц по удельному заряду и устройство для его осуществления

 

Изобретение относится к масс-спектрометрии и может быть использовано для создания гиперболоидных масс-спектрометров с простыми анализаторами и высокими аналитическими показателями. Технический результат состоит в упрощении конструкции электродной системы анализаторов, повышении их срока службы, а также в улучшении параметров гиперболоидных масс-спектрометров. Способ разделения заряженных частиц по удельному заряду заключается в ограничении по оси сортировки рабочего объема трехмерного гиперболоидного анализатора областью 0, где под действием переменного поля анализируемые ионы совершают периодические или близкие к периодическим однополярные колебания. Рабочие точки анализируемых ионов по оси сортировки располагают на границе зоны стабильности, а по другим координатам - в глубине зоны стабильности. Анализатор одномерного гиперболоидного масс-спектрометра состоит из двух осесимметричных гиперболоидных электродов с радиусами r1>r2, расположенных в полусфере Z>0, а также из экранирующего электрода в форме усеченного конуса и полупрозрачного корректирующего электрода. Образование ионов под воздействием электронного пучка происходит в рабочем объеме анализатора при нулевых напряжениях на электродах. Размеры полеобразующих электродов определeны с учетом свободного прохождения пучка электронов. Фаза переменного поля согласована с начальными координатами и скоростями частиц. Вывод отсортированных ионов происходит через отверстие в нижнем полеобразующем электроде. 2 с. п. ф-лы, 2 ил.

Изобретение относится к масс-спектрометрии и может быть использовано для создания гиперболоидных масс-спектрометров с простыми анализаторами и высокими аналитическими показателями.

В существующих геперболоидных масс-спектрометрах сортировку заряженных частиц по удельному заряду осуществляют по двум или трем координатам, а рабочие точки анализируемых ионов располагают в зоне стабильности [1, 2]. Анализаторы таких масс-спектрометров состоят из трех или более полеобразующих электродов и сложны в изготовлении и сборке. Монопольный масс-спектрометр с простой электродной системой имеет низкую разрешающую способность. За прототип принята трехмерная ионная ловушка [2]. Техническая задача предлагаемого изобретения состоит в упрощении конструкции электродной системы гиперболоидных анализаторов, повышении срока их службы, а также в увеличении скорости анализа гиперболоидных масс-спектрометров. Поставленная задача осуществляется в предлагаемом способе и устройстве.

Предлагаемый способ разделения частиц по удельному заряду основан на ограничении по оси сортировки Z рабочего объема трехмерного гиперболоидного анализатора областью r2<z, где под действием переменного электрического поля анализируемые ионы совершают вдоль координаты Z периодические или близкие к периодическим колебаниям, описываемые решениями нулевого порядка ce0(t) и fe0(t) уравнения Хилла для границы стабильности a0(q) [1]. На основе однополярных свойств функций ce0(t) и fe0(t) осуществляется сортировка частиц по удельному заряду вдоль одной координаты Z. По другим координатам рабочая точка анализируемых ионов расположена в глубине зоны стабильности.

На фиг. 1 представлена электродная система одномерного однополярного анализатора частиц по удельному заряду. Анализатор состоит из двух осесимметричных гиперболоидных электродов 1 и 2 с радиусами r1>r2, расположенных в полусфере Z>0, экранирующего электрода 3 в форме усеченного конуса и полупрозрачного корректирующего электрода 4. Активная зона 5 анализатора имеет форму цилиндра с радиусом RA0,5r1, ограниченного по оси сортировки радиусами r1 и r2 полеобразующих электродов. Диаметр d2 нижнего электрода 1 выбран из условия d2 2,82[(r1-dэ)2-r22]1/2, свободного прохождения между полеобразующими электродами ленточного пучка ионизирующих электронов 6 толщиной d2. Диаметр d1 оптимизирован по минимуму отклонения распределения потенциала в активной зоне анализатора от квадратичного. В центральной части электрода 2 находится отверстие диаметром dB=0,2r1, за которым расположен полупрозрачный электрод 4 с потенциалом K. Между полеообразующими электродами приложено импульсное периодическое с периодом 2T напряжение U(t)=U1(t)-U2(t), начальная фаза которого согласована с координатами и начальными скоростями ионов (фиг. 2). На экранирующем электроде 3 напряжение равно оптимальному Uэ= (U1+U2)/2, при котором отклонения потенциала в активной зоне анализатора от идеального распределения минимальные.

Единичный цикл масс-анализа состоит из ионизации, сортировки и регистрации (фиг. 2). Во время ионизации Tи под действием ленточного пучка электронов 6 при нулевых напряжениях на электродах анализатора в активной зоне 5 образуются ионы с начальными координатами Z0r1 и тепловыми начальными скоростями. Малый разброс начальных координат ионов Z0/Z0 0,05 достигается при толщине пучка электронов dэ0,1r1. Свободное прохождение через анализатор электронного пучка устраняет возможность попадания ионизирующих электронов на полеобразующие электроды, что снижает скорость образования на электродах диэлектрических пленок.

Сортировка заряженных частиц по удельному заряду происходит на интервале Tс под действием напряжения U(t). Для ионов с начальными координатами Z0r1 и малыми тепловыми начальными скоростями оптимальная начальная фаза 01 = 0 установлена длительностью t1= T/2 и положительной полярностью первого импульса питающего напряжения U(t) (фиг.2). Из-за тепловых начальных скоростей траектории части ионов анализируемой массы m0 не являются строго периодическими, их огибающие убывают или нарастают в процессе сортировки по линейному закону. Доля удерживаемых в течение n периодов сортировки ионов оценивается коэффициентом 0,1(Um/0)1/2, где Um - амплитуда импульсного напряжения U(t), 0 - разрешающая способность анализатора по нулевому уровню массового пика. Зависимость коэффициента , характеризующего чувствительность анализатора, от параметра 0 оказывается слабой, что важно при создании масс-спектрометров с высоким разрешением.

Ионы других масс mm0 при сортировке смещаются по координате Z в сторону одного из полеобразующих электродов и выводятся из анализатора. Малый разброс начальных координат частиц Z0/Z0 0,05 и свойства одномерной однополярной сортировки ионов улучшают форму массовых пиков и повышают скорость масс-анализа. Массовые пики имеют строго ограниченную протяженность, а скорость сортировки, оцениваемая соотношением n = (0,40,7)1/2, оказывается в 2-5 раз выше чем у других гиперболоидных масс-спектрометров.

Цикл сортировки завершается в фазе питающего напряжения в = /2 (фиг. 2), отсортированные ионы на интервале Tp через отверстие в электроде 2 и полупрозрачный электрод 4 выводятся из анализатора и поступают на блок регистрации.

Предлагаемый способ сортировки частиц по удельному заряду и устройство для его осуществления улучшают форму массовых пиков, повышают скорость масс-анализа, упрощают конструкцию электродной системы анализатора и повышают срок его службы.

Литература 1. Г.И.Слабоденюк. Квадрупольные масс-спектрометры. - Атомиздат, 1974.

2. Э.П.Шеретов. Гиперболоидные масс-спектрометры. - Измерения, контроль, автоматизация, 1980, N 11-12.

Формула изобретения

1. Способ разделения заряженных частиц по удельному заряду заключается в воздействии на находящиеся в анализаторе с квадратичным распределением потенциала ионы переменным электрическим полем, отличающийся тем, что путем ограничения области сортировки по оси Z положительными значениями r2<r, где r1 и r2 - радиусы граничных эквипотенциалей электрического поля, область стабильности по координате сортировки Z преобразуют в линию, совпадающую с границей устойчивости, а по другим координатам рабочую точку анализируемых ионов располагают в глубине области стабильности, и на заряженные частицы, образованные с близкими к r1 начальными координатами и малым начальными скоростями, воздействуют импульсным электрическим полем с оптимальной начальной фазой.

2. Одномерный однополярный анализатор частиц по удельному заряду с квадратным распределением потенциала, содержащий электродную систему, отличающийся тем, что в качестве электродной системы анализатора используют два осесимметричных гиперболоидных электрода с r1>r2, расположенных в положительной области оси сортировки Z>0, с диаметром нижнего электрода d2 2,82[(r1-dэ)2-r22]1/2, где dэ - толщина ленточного пучка ионизирующих электронов, причем в центральной части нижнего электрода имеется отверстие диаметром dВ0,2 r1, по границам гиперболоидных электродов установлен экранирующий электрод в форме усеченного конуса, а за нижним полеобразующим электродом расположен плоский полупрозрачный корректирующий электрод диаметром dк3 dв.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к динамической масс-спектрометрии и может быть использовано для улучшения технологических и аналитических свойств гиперболоидных масс-спектрометров

Изобретение относится к динамической масс-спектрометрии и может быть использовано для улучшения потребительских свойств и увеличения срока службы масс-спектрометров с гиперболоидными электродными системами

Изобретение относится к области динамической масс-спектрометрии и может быть использовано для совершенствования способов развертки масс, улучшения аналитических и потребительских свойств гиперболоидных и времяпролетных масс-спектрометров

Изобретение относится к области масс-селективного анализа заряженных частиц в двумерных линейных ВЧ полях и может быть использовано для улучшения аналитических, эксплуатационных и потребительских свойств масс-спектрометров времяпролетного типа

Изобретение относится к области масс-спектрометрических приборов, основанных на движении заряженных частиц в двумерных линейных электрических полях, и может быть использовано для улучшения аналитических и потребительских характеристик таких приборов

Изобретение относится к области масс-спектрометрии, в основе которой лежит движение заряженных частиц в двумерных линейных высокочастотных электрических полях, и может быть использовано для усовершенствования конструкций приборов для масс-анализа и улучшения их аналитических и коммерческих характеристик

Изобретение относится к области энергетического анализа потоков заряженных частиц, возбуждаемых рентгеновским излучением с поверхности твердого тела, и может быть использовано для улучшения аналитических, эксплуатационных и потребительских свойств электронных спектрометров, используемых для исследования объектов микро- и наноэлектроники методами рентгено-электронной спектроскопии

Изобретение относится к области энергетического анализа потоков заряженных частиц, возбуждаемых первичными электронами с поверхности твердого тела, и может быть использовано для улучшения аналитических и потребительских свойств электронных спектрометров, используемых для исследования объектов твердотельной электроники методами электронной спектроскопии

Изобретение относится к области фокусировки, энерго и масс-анализа заряженных частиц в линейных высокочастотных электрических полях и может использовано для улучшения конструкторских и коммерческих характеристик приборов для микроанализа вещества. Технический результат - усовершенствование конструкции электродных систем для образования двумерных линейных высокочастотных электрических полей с целью достижения при изготовлении высокой точности реализации их расчетной геометрии с помощью современных технологий. Способ основан на формировании на плоских поверхностях дискретно-линейных распределений высокочастотного потенциала с помощью параллельных емкостных делителей. Система состоит из 3-х плоских электродов, одного заземленного и двух с противофазными дискретно-линейными распределениями вдоль одной оси высокочастотных потенциалов. Дискретные электроды выполнены из тонких диэлектрических пластин с нанесенными на них проводящими поверхностями. Внешние поверхности разделены по диагонали на две половины, одни из которых заземлены, а к другим приложены высокочастотные потенциалы. Внутренние поверхности, гальванически не соединенные с другими частями анализатора, образованы из равномерно распределенных вдоль одной оси проводящих полосок. Между внутренними и внешними проводящими поверхностями образуются емкостные делители высокочастотного напряжения с линейно изменяющимся по одной координате коэффициентом деления. 2 н.п. ф-лы, 2 ил.

Способ разделения заряженных частиц по величине отношения массы к заряду относится к области масс-спектрометрии. Технический результат - повышение чувствительности и стабильности масс-анализа и улучшение масс-габаритных и конструктивно-технологических показателей масс-спектрометров. Способ включает воздействие на заряженные частицы неоднородного высокочастотного поля, при этом поле имеет градиент потенциала вдоль оси Y и близкий к нулевому градиент вдоль оси X, а пучок заряженных частиц с заданной величиной отношения кинетической энергии к заряду вводят в высокочастотное поле непрерывно в плоскости XY под острым углом α к оси Y. 3 ил.
Наверх