Способ получения 1,1,2,2-тетрафторэтана

 

Изобретение относится к способу получения 1,1,2,2-тетрафторэтана, заключающемуся в каталитическом гидрировании тетрафторэтилена при повышенной температуре с использованием в качестве катализатора алюмопалладиевого катализатора. Металлический палладий наносят на -оксид алюминия в количестве 2 мас. %. Оптимально гидрирование проводят при температуре 100 10oC при соотношении высоты контактной массы к диаметру 0,9 - 18,6 в изотермических условиях при нагрузке по тетрафторэтилену 0,11 - 1,45 л/ч на 1 г катализатора. Способ позволяет повысить конверсию по тетрафторэтилену до 99,9% и выход целевого продукта до 99,9%. 4 з.п.ф-лы, 1 табл.

Изобретение относится к химической технологии, а именно к производству 1,1,2,2-тетрафторэтана (хладон-134, HFC-134), перспективного гидрофторуглерода, заменяющего (в смесевой композиции СМ-1) озоноразрушающий холодильный агент - дифтордихлорметан (хладон-12) с использованием существующего холодильного оборудования без его реконструкции и замены масла.

Известен способ синтеза 1,1,2,2-тетрафторэтана, который включает фторирование 1,1,2,2-тетрабромэтана фторидом ртути (II) CBr2HCBr2H + 4HgF2 __ CF2HCF2H + 2Br2 + 4HgF (см. Промышленные фторорганические продукты. Справочник, 2-е издание, "Химия", Санкт-Петербург, 1996 г, стр. 73).

Этот способ синтеза 1,1,2,2-тетрафторэтана не может быть использован в промышленном масштабе из-за образования чрезвычайно больших количеств побочных продуктов.

Наиболее близким способом к предложенному по совокупности существенных признаков является способ получения 1,1,2,2-тетрафторэтана и 1,1,2-трифторэтана каталитическим гидрированием тетрафторэтилена при повышенной температуре (до 150oC) над восстановленной окисью никеля (авторское свидетельство СССР N 110936, опубл. 14.11.57). Общий выход 1,1,2,2-тетрафторэтана и 1,1,2-трифторэтана составляет 75%, при этом выход 1,1,2,2-тетрафторэтана находится на уровне 62%, а 1,1,2-трифторэтана - 13%.

1,1,2-трифторэтан в настоящее время не находит промышленного применения, что осложняет реализацию известного способа в промышленном масштабе. Требуется разработка методов утилизации указанного продукта или его обезвреживания. Образование 1,1,2-трифторэтана в процессе производства 1,1,2,2-тетрафторэтана приводит к адекватному увеличению расходного коэффициента сырья, снижению выхода целевого продукта, ухудшению экологической безопасности процесса.

Предложен способ получения 1,1,2,2-тетрафторэтана каталитическим фторированием тетрафторэтилена при повышенной температуре, катализатором является металлический палладий в количестве 2 мас.%, нанесенный на - окись алюминия (АПК-2). Гидрирование проводится при нагрузке по тетрафторэтилену 0,11-1,45 л/ч на 1 г катализатора, температуре 10010oC при соотношении высоты контактной массы к ее диаметру 0,9-18,6. Процесс проводится в изотермических условиях, т.е. тепло, выделяемое в результате реакции гидрирования, отводится через стенку реактора и утилизируется, например, для генерации насыщенного водяного пара. Возможна утилизация тепла и другими способами: для нагрева воздуха или испарения хладоагентов.

Поддержание температуры 10010oC в зоне реакции возможно и в адиабатических условиях - за счет изменения массы подводимых реагентов или рецикла продуктов реакции.

Предложенный способ, основанный на замене катализатора из восстановленной окиси никеля на алюмопалладиевый катализатор, позволил повысить селективность процесса - увеличить выход 1,1,2,2-тетрафторэтана, подавить образование 1,1,2-трифторэтана и адекватно повысить экологическую безопасность процесса.

Изобретение иллюстрируется следующими примерами.

Пример 1. В стеклянную колонку диаметром 15 мм, снабженную рубашкой для подачи водяного пара, загружали гранулированный катализатор АПК-2 в количестве 46 г (соотношение высоты контактной массы к ее диаметру 18,6). После подачи в рубашку колонки водяного пара в колонку подавали тетрафторэтилен со скоростью 5 л/ч. (Удельная нагрузка по тетрафторэтилену 0,11 л/ч на 1 г катализатора и около 6 л/ч водорода). Продукты гидрирования тетрафторэтилена анализировали хроматографическим методом. По результатам анализа найдено, об.%: Тетрафторэтилен - 0,07 Октафторциклобутан - 0,06 Трифторэтилен - 0,01 1,1,2,2 -Тетрафторэтан - 0,16 1,1,2-Трифторэтан - 1,13 1,1,2,2-Тетрафторэтан - 74,58 Водород - 23,99
По результатам анализа рассчитаны конверсия тетрафторэтилена - 99,9%, выход 1,1,2,2-тетрафторэтана - 98,2%, выход 1,1,2-трифторэтана - 1,49%.

Процесс гидрирования тетрафторэтилена сопровождается выделением тепла. Изотермия процесса 10010oC обеспечивалась постоянной подачей водяного пара в рубашку колонки.

Примеры 2-10. В колонку, описанную в примере 1, загружали различное количество катализатора АПК-2 (от 2,3 до 46 г), что соответствовало соотношению высоты контактной массы к ее диаметру от 0,9 до 18,6. Процесс гидрирования тетрафторэтилена вели аналогично примеру 1. Скорость подачи тетрафторэтилена меняли в диапазоне от 3 до 17 л/ч, что соответствовало удельной нагрузке контактной массы по тетрафторэтилену от 0,13 до 1,45 л/ч на 1 г катализатора.

Скорость подачи водорода поддерживали близкой к стехиометрическим количествам к тетрафторэтилену. Анализ продуктов гидрирования, расчеты конверсии и выходов вели аналогично примеру 1. Результаты приведены в таблице.

Предложенный способ получения 1,1,2,2-тетрафторэтана с использованием катализатора АПК-2, как это видно из примеров, характеризуется высокой конверсией по тетрафторэтилену 59,8-99,9% и высокой селективностью процесса по 1,1,2,2-тетрафторэтану (выход 1,1,2,2-тетрафторэтана на конвертированный тетрафторэтилен) - 80,9-99,9%.

В качестве параллельных процессов имеют место гидрирование тетрафторэтилена до трифторэтилена с последующим получением 1,1,2-трифторэтана (селективность от 0,44 до 12,45%), изомеризация 1,1,2,2-тетрафторэтана до 1,1,1,2-тетрафторэтана и циклодимеризация тетрафторэтилена до октафторциклобутана.

Тепло реакции, выделяющееся в процессе гидрирования тетрафторэтилена желательно использовать для генерации насыщенного водяного пара при атмосферном давлении.


Формула изобретения

1. Способ получения 1,1,2,2-тетрафторэтана каталитическим гидрированием тетрафторэтилена при повышенной температуре, отличающийся тем, что в качестве катализатора используют алюмопалладиевый катализатор.

2. Способ по п. 1, отличающийся тем, что алюмопалладиевый катализатор представляет собой металлический палладий, нанесенный на -оксид алюминия в количестве 2 мас.%.

3. Способ по п.1, отличающийся тем, что гидрирование тетрафторэтилена проводят при нагрузке по тетрафторэтилену 0,11 - 1,45 л/ч на 1 г катализатора.

4. Способ по пп.1 - 3, отличающийся тем, что гидрирование тетрафторэтилена проводят при температуре 100 10oC при соотношении высоты контактной массы к ее диаметру 0,9 - 18,6.

5. Способ по п. 1, отличающийся тем, что процесс гидрирования ведут в изотермических условиях, а тепло реакции отводят через стенку и утилизируют, например, для генерации насыщенного водяного пара.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к синтезу перфторуглеродов общей формулы CnF2n+2, где n = 1 - 4

Изобретение относится к получению гексафторэтана - соединения, которое используется в качестве хладоагента, а также как полупродукт в синтезе фторорганических соединений и растворитель в процессах полимеризации

Изобретение относится к очистке пентафторэтана (хладона-125), применяемого в качестве озонобезопасного хладоносителя и пропеллента в различных отраслях техники, от примеси пентафторхлорэтана (хладона-115)

Изобретение относится к способу получения (гало) фторуглеводородов, используемых как охлаждающие агенты, вспенивающие агенты, растворители и пропелленты
Изобретение относится к способу хлорирования для получения 1,1,1-трихлортрифторэтана

Изобретение относится к химической промышленности и может быть использовано при получении 1,1,2,2-тетрафторэтана (хладона 134), являющегося перспективным озонобезопасным хладоном

Изобретение относится к способу гидрогенолиза галогенуглеводорода формулы CnHmFpClq

Изобретение относится к способу переработки хлорорганических отходов методом гидрогенолиза

Изобретение относится к способу получения хлороформа путем гидрирования четыреххлористого углерода н-парафинами C10-C15 или их смесями в жидкой фазе при температурах 150-180oС и времени контакта 1-8 ч
Наверх