Способ получения нитевидных кристаллов оксида цинка

 

Изобретение может быть использовано в полупроводниковом материаловедении. Сущность изобретения: рост нитевидных кристаллов оксида цинка осуществляют на воздухе с использованием излучения CO2- лазера непрерывного действия. Изобретение позволяет получать нитевидные кристаллы без затравок и кристаллизационных камер. 1 ил.

Изобретение относится к области полупроводникового материаловедения. Размеры, форма и связанные с ними специфические свойства нитевидных кристаллов делают их привлекательными объектами для различных применений в науке и технике: в физике - объекты для изучения размерных эффектов, а также кинетики роста кристалла вообще в приближении одномерного случая, в технике - активные элементы автоэмиссионных приборов, тензодатчики и т.д.

Известна тенденция оксида цинка к формированию игольчатого габитуса нитевидных монокристаллов, вытянутых вдоль оси C, при традиционных методах роста (см., например, [1, 2]). Известно также об использовании лазерного нагрева для выращивания монокристаллов по крайней мере оксидных материалов: Al2O3, La2Ti2O7, Y3Al5O12, Eu2Ti2O7 и др. (см., например, [3,4]).

Техническим результатом данного изобретения является получение нитевидных кристаллов оксида цинка без затравок и кристаллизационных камер - на воздухе с использованием излучения CO2-лазера непрерывного действия.

В экспериментах использовался серийный лазер непрерывного излучения ЛГ-25 на CO2 мощностью 25 Вт. При фокусировке Ge-линзой с f=20 см плотность мощности на поверхности таблетки превышала 105 Вт/см2. Предварительно спрессованные из порошка оксида цинка марки ОСЧ таблетки, размерами L ~1 cм и D ~ 1 cм, отжигались в муфельной печи при T ~ 800oC в течение 1 часа для обеспечения механической прочности. Процедура облучения занимала 1-3 мин. За короткое время (~10 сек) в локальной области облучения температура достигает величины (непосредственные измерения затруднены как размерами области, так и существенным градиентом температур), необходимой для разложения (T > 1750oC) и, возможно, плавления (T > 1950oC) оксида цинка. Размер кратера в области облучения в зависимости от времени и исходной плотности мощности достигал 3 - 4 мм. На краях кратера образуются бугорки - утолщения, видимые невооруженным глазом. При наблюдении под микроскопом с небольшим увеличением (10-100) отчетливо видно, что край кратера состоит из дискретных яйцевидных образований размерами порядка 1 мм, отстоящих друг от друга на таком же расстоянии. На чертеже приведена микрофотография фрагмента края кратера, полученная при увеличении х 25. Можно видеть, что нитевидные кристаллы растут в радиальных направлениях на каждом из таких образований, исключая их внутреннюю коническую поверхность, близкую к зоне облучения. Размеры этих кристаллов вдоль оси C достигали нескольких мм, а в перпендикулярных к оси C направлениях - нескольких мкм.

Список литературы 1. Гиваргизов Е.И. Рост нитевидных и пластинчатых кристаллов из пара. - М.: Наука, 1977, 300 с.

2. Park Y.S., Reynolds D.C.J. of Appl. Phys. 1967, v. 38, N 2, p. 756-760.

3. Реди Дж. Действие мощного лазерного излучения. - М.: Мир, 1974, 450 с.

4. Рябченков В.В. Синтез тугоплавких монокристаллов в условиях лазерного нагрева. Автореферат кандидатской диссертации. - М., ИКАН, 1987, 18 с.

Формула изобретения

Способ выращивания нитевидных кристаллов оксида цинка, отличающийся тем, что рост осуществляют на воздухе с использованием излучения CO2-лазера непрерывного действия.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к технике для производства кристаллоидных материалов
Изобретение относится к получению искусственных кристаллов, используемых в различных областях техники

Изобретение относится к технологии получения монокристаллов макромолекул и может быть использовано в биотехнологии, в частности для получения монокристаллов белка вируса гриппа, обеспечивает устойчивый рост монокристаллов

Изобретение относится к управлению термодинамическими потоками и может быть использовано при разработке и оптимизации различных массообменных процессов, включая тепломассоперенос в жидкой фазе, плавление и/или кристаллизацию

Изобретение относится к технологии получения полупроводниковых материалов, предназначено для получения нитевидных кристаллов (НК) с воспроизводимыми геометрическими параметрами

Изобретение относится к способам получения полупроводниковых, пьезо- и сегнетоэлектрических материалов с требуемыми свойствами, в частности тетратитаната бария, который является перспективным материалом для получения высокодобротной СВЧ-керамики, которая используется для элементов в микроволновых интегральных схемах и для подложек, на которых выполняются элементы схемы

Изобретение относится к составам шихты и способам получения методом твердофазного синтеза игольчатых и нитевидных кристаллов муллита, которые могут быть использованы в качестве армирующего материала в различных композициях или наполнителях в неорганических фильтрах и в качестве матрицы для нанесения катализаторов

Изобретение относится к способам получения микрокристаллов, а именно к выращиванию кристаллических микровыступов из металлов с объемноцентрированной кубической решеткой и обеспечивает получение единственного стационарного микровыступа на вершине острия кристалла

Изобретение относится к порошковой металлургии, в частности к получению монокристаллов сферической и нитевидной форм, которые могут быть использованы в практике физического эксперимента и как материалы со специально созданным комплексом свойств: высоким уровнем прочности, коррозионной износостойкости

Изобретение относится к способу выращивания кристаллов из расплава методом Чохральского с получением монокристаллов

Изобретение относится к полупроводниковой электронике и может быть использовано в микроэлектронике и оптоэлектронике для записи и считывания информации

Изобретение относится к способу получения слоев гидроксидов металлов
Наверх