Огневой стенд для испытания горелочных устройств

 

Изобретение относится к энергетике и может быть использовано для исследования процессов горения жидкого топлива и испытаний горелочных устройств. Оно обеспечивает возможность моделирования условия сжигания топлива в любых топках технологических печей и судовых паровых котлов и получить различную степень экранирования топки в целом и по длине факела горелочного устройства, для чего огневой стенд снабжен узлами соединения со змеевиками, образующими экранирующую поверхность топки и комплектами съемных змеевиков, отличающихся диаметром труб и шагом их размещения, что позволяет изменять степень экранирования от 0 до 85%. 2 ил.

Изобретение относится к области энергетики и может быть использовано для исследования процессов горения жидкого топлива и испытаний горелочных устройств.

Известна установка для испытания горелочных устройств, включающая камеру сгорания с водоохлаждаемыми трубами, вспомогательное оборудование для подачи мазута и воздуха и обеспечения сгорания, а также системы контрольно-измерительных приборов (см. Д.И.Рабинович, В.Ю.Горячкин "Исследование коррозии при сжигании сернистых мазутов с малыми избытками воздуха", ж. "Электрические станции" N 6, 1970, стр. 21-24, рис. 1).

При проведении испытаний на экспериментальной установке, в отличие от испытаний на промышленном агрегате, постоянство параметров процесса достигается относительно просто, что позволяет более четко выделить влияние отдельных параметров на процесс в целом. Однако подобный подход не позволяет учитывать влияние ряда факторов, связанных с конструктивными особенностями топочной техники, что снижает практическую ценность полученных результатов.

Известен также огневой стенд для испытания горелочных устройств, содержащий камеру сгорания, снабженную узлами крепления горелочных устройств, газовоздушную, топливные системы и охлаждающую поверхность, выполненную в виде сплошного змеевика (см. К.И.Иванов, К.Е.Зегер, В.М.Гуков. "Стендовый метод изучения золового заноса поверхности нагрева мазутных котлов", ж. "Теплоэнергетика", N 6, 1968, с. 21-22).

Это устройство наиболее близко к предлагаемому по технической сущности и выбрано в качестве прототипа.

Недостатками прототипа являются возможность проведения только модельных испытаний с нормированной производительностью и с неизменной степенью экранирования.

Задачей, на решение которой направлено предлагаемое решение, является возможность проведения на одном и том же стенде не только модельных, но и промышленных испытаний в топках с изменяемой степенью экранирования.

Технический результат, достигаемый при использовании предлагаемого решения, выражается в повышении тепловой мощности топочного объема камеры сгорания огневого стенда до значений, соответствующих топкам реальных паровых котлов, и расширении диапазона изменяемой в процессе исследований степени экранирования топки.

Поставленная задача решается тем, что огневой стенд для испытания горелочных устройств, содержащий камеру сгорания, снабженную узлами крепления горелочных устройств, газовоздушную, топливную системы и экранированную поверхность, выполненную в виде змеевиков, отличается тем, что экранирующая поверхность выполнена с возможностью изменения степени экранирования от 0 до 85%, для чего огневой стенд снабжен узлами соединения со змеевиками, образующими экранирующую поверхность топки, и комплектами съемных змеевиков, отличающихся диаметром труб и шагом их размещения.

Сопоставительный анализ признаков заявленного решения и признаков прототипа и аналогов свидетельствует о соответствии заявленного технического решения критерию "новизна".

Совокупность признаков отличительной части формулы изобретения обеспечивает возможность моделирования условия сжигания топлива в любых топках технологических печей и судовых паровых котлов и получить различную степень экранирования топки в целом и по длине факела горелочного устройства.

На фиг. 1 приведена принципиальная схема огневого стенда, на фиг. 2 - общий вид камеры сгорания.

Огневой стенд (см. фиг. 1) содержит камеру сгорания 1; горелючное устройство 2 с узлами крепления; газовоздушную систему, включающую высоконапорный вентилятор 3, расходомерное сопло 4, воздушную заслонку 5 и температурный датчик 6; топливную систему, содержащую расходную топливную емкость 7, насос 8, фильтры грубой 9 и тонкой 10 очистки, подогреватель 11, регулировочный клапан 12; пароводяную систему, включающую сепаратор aтмocферного типа 13, циркуляционный насос 14, пароводяной 15 и водяной 16 коллекторы.

Камера сгорания 1 (см. фиг. 2) состоит из стального корпуса, включающего диффузорную, цилиндрическую и конфузорную части. Цилиндрическая часть состоит из четырех секций 17 с фланцевыми соединениями 18. Внутренняя поверхность корпуса камеры сгорания 1 выложена футеровочным кирпичом. Экранная поверхность нагрева образована в каждой части секции 17 камеры сгорания трубными элементами 19 змеевикового типа (змеевиками), последовательно соединенными через стаканы 20 с помощью фланцевого соединения с пароводяным 15 и водяным 16 коллекторами.

Путем перестановки по оси камеры сгорания 1 змеевиков 19 с различными шагами и диаметрами труб можно получить различную степень экранирования как топки в целом, так и по длине факела горелочного устройства. Для наблюдения за процессом горения и зондирования факела обечайки всех секций камеры сгорания оборудованы смотровыми окнами и лючками 21.

Огневой стенд работает следующим образом. Перед пуском стенда в цилиндрические секции 17 камеры сгорания 1 устанавливают змеевики 19 с необходимым для данного эксперимента шагом и диаметром труб (определяются расчетами) путем фланцевого соединения элементов 19 посредством стаканов 20. После сборки всех секций 17 камеры сгорания 1 устанавливают горелочное устройство 2, и стенд подготовлен к работе.

Перед пуском камеры сгорания 1 включают вентилятор 3, который нагнетает воздух в камеру сгорания через горелочное устройство 2, необходимый для горения топлива. Расход воздуха измеряют при помощи расходомерного сопла 4 и регулируют воздушной заслонкой 5. Температуру воздуха перед горелочным устройством 2 контролируют датчиком 6. Топливо из расходной топливной емкости 7 шестеренным насосом 8 нагнетают через фильтры 9, 10 и подогреватель 11 в горелочное устройство 2. Подогрев топлива осуществляют за счет теплоты пароводяной смеси, отбираемой из пароводяного коллектора 15 камеры сгорания 1. Расход топлива регулируют клапаном 12 и измеряют в топливной емкости 7 объемным методом. Из горелочного устройства 2 топливо в распыленном виде подают в камеру сгорания 1 на горение. Воду из сепаратора 13 забирают циркуляционным насосом 14 и нагнетают в водяной коллектор 16, из которого распределяют по трубным элементам 19 змеевикового типа экранной поверхности камеры сгорания 1. Образующаяся в элементах 19 пароводяная смесь поступает в собирающий пароводяной коллектор 16, из которого сбрасывается в сепаратор 13, где отделенную от пара воду смешивают с добавочной водой, вновь забирают циркуляционным насосом 8 и совершается движение по описанному пароводяному контуру. Сепаратор атмосферного типа 13 вертикального исполнения, кроме отделения пара от воды, поддерживает систему в определенном диапазоне рабочего давления при небалансе между генерацией и расходом пара.

После окончания эксперимента, при переходе на испытания с отличными от первоначальных геометрическими и режимными параметрами топочной техники, производят монтаж нового горелочного устройства 2 и замену трубных элементов 19 экранной поверхности с другими диаметрами и шагами труб с целью создания нужной степени экранирования.

Очередной запуск огневого стенда производится по вышеописанной схеме.

Преимуществами предлагаемого огневого стенда является его многофункциональность, т.к. на нем можно проводить: испытания экспериментальных и промышленных горелочных устройств и форсунок стационарных и транспортных (судовых) паровых котлов, экспериментальное изучение факельного процесса горения распыленного жидкого топлива, исследование процессов заноса золовыми отложениями и коррозии поверхностей нагрева паровых котлов при сжигании тяжелых сернистых мазутов, экологическое изучение условий образования токсичных веществ и газов в факеле горелочного устройства и продуктах сгорания жидкого топлива.

Формула изобретения

Огневой стенд для испытания горелочных устройств, содержащий камеру сгорания, снабженную узлами крепления горелочных устройств, газовоздушную, топливную системы и экранирующую поверхность, выполненную в виде змеевиков, отличающийся тем, что экранирующая поверхность выполнена с возможностью изменения степени экранирования от 0 до 85%, для чего огневой стенд снабжен узлами соединения со змеевиками, образующими экранирующую поверхность топки, и комплектами съемных змеевиков, отличающихся диаметром труб и шагом их размещения.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к проточному парогенератору с вертикальным газоходом из в основном вертикально расположенных и герметично сваренных друг с другом труб, которые вместе образуют стенки топочной камеры и несут горелки для ископаемого топлива, имеющие внутренний диаметр труб d и содержащие образующие на их внутренней стороне многозаходную резьбу ребра с шагом h и высотой ребер H и которые включены параллельно для протекания средства охлаждения

Изобретение относится к области парогенераторостроения и может быть использовано в конструкциях котлов и котлов-утилизаторов

Котел // 2059158
Изобретение относится к котлостроению и может быть использовано в устройствах водотрубных прямоточных котлов

Изобретение относится к теплоэнергетике , а именно к котлам, работающим в системах отопления и горячего водоснабжения , улучшает их ремонтопригодность и обеспечивает регулирование теплопроизводительности

Изобретение относится к конструкциям иамер сгорания и предназначено преимущественно для наплавления кварцевого стекла

Изобретение относится к энергетике и м

Изобретение относится к топочным экранным поверхностям нагрева топок с наклонными или вертикальными трубами и коллекторами подвода-отвода пароводяной смеси

Изобретение относится к горелкам, которые применяются в способах формирования минеральных волокон и в которых вытягивание этих волокон является следствием только лишь течений газовых потоков, производимых упомянутыми горелками

Удерживающий элемент для удерживания кирпича теплозащитного экрана на несущей структуре с, по меньшей мере, одним крепежным участком, который может крепиться на несущей структуре, и, по меньшей мере, одним удерживающим участком с удерживающей головкой, которая выполнена для зацепления с устройством зацепления, присутствующим на кирпиче теплозащитного экрана. Крепежный участок при укрепленном на несущей структуре крепежном участке и вошедшем в зацепление с кирпичом теплозащитного экрана удерживающем участке содержит одну верхнюю сторону, обращенную к холодной стороне кирпича теплозащитного экрана. В крепежном участке расположен, по меньшей мере, один проход для охлаждающего воздуха, который содержит одно входное отверстие и, по меньшей мере, одно выходное отверстие, расположенное в боковой поверхности и/или на верхней стороне крепежного участка. Изобретение направлено на предотвращение образования окалины на несущей структуре в результате всасывания горячего газа. 5 н. и 10 з.п. ф-лы, 5 ил.

Теплозащитный экран для камеры сгорания газовой турбины содержит несущую конструкцию и множество кирпичей, закрепленных съемно на несущей конструкции с помощью держателей. Каждый кирпич теплозащитного экрана имеет обращенную к несущей конструкции холодную сторону и расположенную напротив нее горячую сторону. Каждый держатель кирпичей содержит по меньшей мере один опорный участок для крепления на кирпиче теплозащитного экрана и один фиксирующий на несущей конструкции крепежный участок, закрепленный съемно внутри проходящих в несущей конструкции крепежных пазов. Для защиты от горячих газов в несущей конструкции выполнен по меньшей мере один проход для охлаждающего воздуха, проходящий до дна крепежного паза. Изобретение позволяет охлаждать теплозащитный экран и предотвращать образование окалины несущей конструкции. 5 з.п. ф-лы, 8 ил.

Изобретение относится к теплозащитному экрану для камеры сгорания газовой турбины с несущей структурой и некоторым количеством брусков теплозащитного экрана, фиксированных с возможностью разъединения на несущей структуре посредством держателей брусков. Каждый брусок теплозащитного экрана имеет обращенную к несущей структуре холодную сторону и противоположную холодной стороне нагружаемую горячей средой горячую сторону. Каждый держатель брусков имеет по меньшей мере один удерживающий участок для крепления к бруску теплозащитного экрана и один участок крепления с возможностью его крепления на несущей структуре. Участок крепления можно фиксировать к проходящему в несущей структуре крепежному пазу. Для защиты от горячих газов предусмотрен по меньшей мере один канал для холодного воздуха. Дополнительно к крепежным пазам на несущей структуре расположен по меньшей мере один паз для холодного воздуха. Паз для холодного воздуха частично перекрыт, по меньшей мере, у фиксированных на несущей структуре брусков теплозащитного экрана в продольном направлении паза для холодного воздуха так, что образуется участок паза в форме канала, в который впадает по меньшей мере один канал холодного воздуха, поэтому вытекающий из канала холодного воздуха холодный воздух может поворачивать, по существу, в продольном направлении паза для холодного воздуха. Согласно изобретению теплозащитный экран обеспечивает охлаждение несущей структуры и предотвращает ее окалинообразование вследствие втягивания горячего газа. 4 н. и 8 з.п. ф-лы, 3 ил.
Наверх