Способ ввода анализируемых ионов в рабочий объем анализатора гиперболоидного масс-спектрометра типа трехмерной ловушки

 

Способ относится к гиперболоидной масс-спектрометрии и может быть использован при создании приборов данного вида с высокими чувствительностью и разрешающей способностью. По заявленному способу ионы, образованные вне рабочего объема анализатора, вводят в рабочий объем анализатора через один либо несколько узких каналов, выполненных в кольцевом электроде, под углом к прямой, соединяющей точку ввода иона и точку пересечения плоскости, перпендикулярной оси симметрии электродной системы, с этой осью и проходящей через точку ввода ионов. Это позволит значительно повысить предельную чувствительность прибора. 2 ил.

Изобретение относится к гиперболоидной масс-спектрометрии и может быть использовано при разработке приборов данного вида с высокой чувствительностью и разрешающей способностью.

Известны гиперболоидные масс-спектрометры с анализаторами типа трехмерной ловушки, в которых анализируемые ионы вводятся в рабочий объем анализатора путем ионизации молекул либо атомов газа, находящихся в этой объеме, электронным ударом. Для реализации известного способа в рабочий объем анализатора вводят извне ионизирующий электронный поток [1].

Известный способ имеет ряд преимуществ, один из которых - простота конструкции и совмещение области ионизации и области анализа. Последнее увеличивает коэффициент использования анализируемого вещества. Известный способ имеет существенный недостаток, обусловленный большим потоком заряженных частиц (электронов), вводимых в объем анализатора, что приводит к быстрому образованию диэлектрических пленок на рабочих поверхностях электродов анализатора и, как следствие, ухудшению поля, формы массового пика и срока службы масс-спектрометра.

Известен способ ввода анализируемых заряженных частиц в рабочий объем анализатора типа трехмерной ловушки, по которому анализируемые ионы вводят в объем анализатора извне, образуя их вне рабочего объема, и, соответственно, тем самым существенно уменьшают вводимый в анализатор поток заряженных частиц [2]. Для реализации этого способа на время ввода ионов изменяют форму ВЧ сигнала, подаваемого на электроды анализатора.

Недостатком прототипа является принципиально ограниченное время ввода заряженных частиц в рабочий объем анализатора. Это резко ограничивает чувствительность масс-спектрометра и возможность реализации процедуры накопления ионов в рабочем объеме, что является существенным преимуществом масс-спектрометров типа трехмерной ловушки.

Целью изобретения является создание способа ввода анализируемых ионов в рабочий объем анализатора гиперболоидного масс-спектрометра типа трехмерной ловушки, при котором устраняются недостатки прототипа и можно безгранично увеличивать чувствительность гиперболоидных масс-спектрометров типа трехмерной ловушки за счет накопления избранных заряженных частиц в рабочем объеме анализатора в условиях высокого вакуума.

Указанная цель достигается тем, что по предлагаемому способу анализируемые ионы вводят в рабочий объем анализатора через канал либо несколько каналов, выполненных в кольцевом электроде, причем ионы вводят под углом к прямой, соединяющей точку ввода иона и точку пересечения плоскости, перпендикулярной оси симметрии электродной системы с этой осью и проходящей через точку ввода иона. При этом, для существенного увеличения эффективности захвата, электроды анализатора выполняют в виде эллипсов вращения.

На фиг. 1 и 2 иллюстрируется предлагаемый способ ввода. На фиг. 1a: 1 и 2 - торцевые электроды электродной системы, 3 - кольцевой электрод, в котором выполнен канал 4 для ввода ионов в рабочий объем анализатора, 5 - вводимый ионный поток. На фиг. 1b показано сечение кольцевого электрода вблизи плоскости ввода ионного потока и показано направление ввода потока под углом к прямой 6, соединяющей точку ввода иона и точку пересечения плоскости, перпендикулярной оси симметрии электродной системы (плоскость чертежа), с осью симметрии электродной системы (ось z). На фиг. 2a иллюстрируется вид траектории иона в плоскости ввода, введенного в анализатор по предлагаемому способу при малом времени движения иона (6 периодов (ВЧ поля). При большем времени движения траектории накладываются (с незначительным сдвигом) друг на друга и на фигуре не различаются. На фиг. 2b приведена зависимость модуля радиуса вектора частицы (условия фиг. 2a) от времени. Видно, что со временем радиус-вектор уменьшается. Время движения вводимого иона оказывается достаточно большим, что позволяет в течение этого времени накапливать вводимые ионы и в 100 раз увеличивать предельную чувствительность масс-спектрометра по сравнению с прототипом.

Траектории, приведенные на фиг. 2a и 2b, получены при импульсном питании электродов осесимметричного анализатора (меандр). Точка ввода иона находилась на поверхности кольцевого электрода. Координаты точки ввода: y0=0,5; x0=0,866025; z0=0. Ион вводился вдоль оси y со скорость y'=-0,3 (все начальные параметры - относительные величины). Рабочая точка иона на "импульсной" общей диаграмме стабильности находилась в первой стабильной зоне. Координаты рабочей точки: a1=2, a2=2,645074 [3]. Для увеличения эффективности захвата ионов, электроды анализатора выполняют в виде эллипсоидов вращения.

Таким образом, использование предлагаемого способа ввода анализируемых ионов в рабочий объем анализатора гиперболоидного масс-спектрометра типа трехмерной ловушки позволяет по сравнению с существующими значительно повысить предельную чувствительность прибора.

Литература 1. Шеретов Э. П. и др. Трехмерный квадрупольный масс-спектрометр с накоплением ионов. ПТЭ. - 1971, N 1, с. 166-168.

2. FR 2522199 A1, H 01 J 49/02, 26.08.83.

3. Шеретов Э. П., Колотилин Б.И., Брыков А.В., Шеретов А.Э Особенности диаграммы стабильности при питании ГМС ЕС-сигналом. Научное приборостроение. Межвузовский сборник научных трудов. - Рязань, 1996, с. 93.

Формула изобретения

Способ ввода анализируемых ионов в рабочий объем анализатора гиперболоидного масс-спектрометра типа трехмерной ловушки, по которому в рабочий объем анализатора вводят ионы, образованные вне рабочего объема, отличающийся тем, что анализируемые ионы вводят в рабочий объем анализатора через один либо несколько каналов, выполненных в кольцевом электроде под углом к прямой, соединяющей точку ввода иона и точку пересечения плоскости, перпендикулярной оси симметрии электродной системы, с этой осью и проходящей через точку ввода иона.

РИСУНКИ

Рисунок 1, Рисунок 2

MM4A Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины заподдержание патента в силе

Дата прекращения действия патента: 26.06.2010

Дата публикации: 10.12.2011




 

Похожие патенты:

Изобретение относится к области масс-спектрометрии, а именно к квадрупольной масс-спектрометрии и может быть использовано при изотопном и элементном анализе состава веществ

Изобретение относится к масс-спектрометрии, в частности к динамическим гиперболоидным масс-спектрометрам пролетного типа, и может быть использовано при создании квадрупольных фильтров масс с повышенной чувствительностью и разрешающей способностью

Изобретение относится к области масс-спектрометрии, в частности к аналитическим системам трехмерных гиперболоидных ловушек, применяемых в составе масс-спектрометров для широкого круга задач по анализу органических и неорганических соединений

Изобретение относится к гиперболоидной масс-спектрометрии и может быть использовано при разработке приборов данного вида с высокой чувствительностью и разрешающей способностью
Изобретение относится к масс-спектрометрии, в частности к динамической масс-спектрометрии, применяемой для анализа состава вещества в широком диапазоне масс

Изобретение относится к масс-спектрометрии

Изобретение относится к масс-спектрометрии, а именно к квадрупольной масс-спектрометрии и может быть использовано при создании масс-спектрометров с высокой чувствительностью в широком диапазоне масс

Изобретение относится к экспериментальной физике, предназначено для анализа поверхности твердого тела и позволяет расширить функциональные возможности прибора посредством дополнительной регистрации оптического излучения, возникающего при взаимодействии первичного ионного пучка с поверхностью образца

Изобретение относится к области аналитического приборостроения и, в частности, к конструкциям детектора для газовых хроматографов

Изобретение относится к аналитическому приборостроению и может быть использовано при анализе природных и технологических вод, биопроб, геологических проб и воздуха

Изобретение относится к области газового анализа и может быть использовано для обнаружения микропримесей веществ в газовых смесях, в частности, в атмосферном воздухе

Изобретение относится к газоаналитическим приборам непрерывного действия и может быть использовано в системах контроля технологической атмосферы в различных отраслях промышленности

Изобретение относится к области аналитической химии, в частности к способам анализа примесей в газе, основанным на ионной подвижности

Изобретение относится к области аналитической химии, в частности к способам анализа примесей веществ в газе, основанным на ионной подвижности

Изобретение относится к спектроскопии плазмы, а точнее к лазерным методам диагностики плазмы
Наверх