Способ получения солевого раствора цезия и рубидия

 

Изобретение касается получения солевого раствора цезия и рубидия с плотностью между 1,6 и 3,3 г/см3. Проводят гидротермальное разложение некальцинированного поллуцита и/или кальцинированного лепидолита в течение 0,5 - 3 ч водным раствором Ca(OH)2 при температуре реакции от 200 до 280oC и давлении от 15 до 65 бар, а также при плотности суспензии в интервале между 8 и 18 вес.%. Используют некальцинированный поллуцит и/или кальцинированный лепидолит со средним размером зерен до 0,5 мм. Разлагают их в автоклаве с вращающейся трубой, при этом мольное соотношение SiO2 к CaO находится в диапазоне 1 : 2,5 и 1 : 1,25. Далее ведут отделение нерастворимых твердых веществ, в случае необходимости, путем удаления ионов кальция и лития с помощью насыщения двуокисью углерода и путем отделения выпавших в осадок из фильтрата разложения карбонатов. Затем производят образование солей цезия и рубидия с помощью добавления кислоты или кислотного ангидрида до значения pH, равного по меньшей мере 6. Для получения требуемой плотности солевого раствора цезия и рубидия производят концентрирование раствора путем упаривания после разложения, отделения выпавших в осадок карбонатов и/или после добавления кислоты или кислотного ангидрида. Результат изобретения: уменьшение степени размола исходного минерала, сокращение избытка окиси кальция по отношению к двуокиси кальция при сохранении высокой степени выхода продукта и плотности суспензии. 3 з.п.ф-лы, 6 табл.

Изобретение касается способа получения солевого раствора цезия и рубидия с плотностью между 1,6 и 3,3 г/см3 путем гидротермального разложения некальцинированного поллуцита и/или кальцинированного лепидолита в течение 0,5-3 часов водным раствором Ca(ОН)2 при температуре реакции от 200 до 280oC и давлении от 15 до 65 бар, а также при плотности суспензии в интервале между 8 и 18 вес. % путем отделения нерастворимых твердых веществ, при известных условиях, путем удаления ионов кальция и лития с помощью насыщения двуокисью углерода и путем отделения выпавших в осадок из варочного фильтрата карбонатов, а также путем образования солей цезия и рубидия с помощью добавления кислоты или кислотного ангидрида до значения pH, равного по меньшей мере 6, причем для получения плотности солевого раствора цезия и рубидия производится концентрация раствора путем упаривания после варки, после отделения выпавших в осадок карбонатов и/или после добавления кислоты или кислотного ангидрида.

Из журнала "Tsvetnye Metally (цветные металлы) - The Soviet Journal of Non-Ferrous Metals", том 11, N 5, стр. 57-59 (1961) известен метод гидротермального разложения концентрата поллуцита и сподумена для получения карбоната цезия. Кальцинированные минералы подвергаются при этом гидротермальному разложению водным раствором Ca(ОН)2 при 220oC и давлении в 20 атм в течение 4 часов, причем оптимальные условия разложения достигаются при 3 моль Ca(ОН)2 на моль SiO2. Получают 88,3% содержащегося в минерале цезия и путем перекристаллизации алюмоцезиевых квасцов получают цезиевую соль, имеющую чистоту > 99%. Далее, из Chemical - Abstracts - Referat 79/4949 (1973) известен метод преобразования Cs2CO3 в CsHCO2, при этом карбонат реагирует с муравьиной кислотой в воде.

Далее, немецкая заявка P 4237954.7 на выдачу патента описывает способ получения солевых растворов цезия и рубидия с плотностью от 1,6 до 3,3 г/см3 путем гидротермального разложения содержащих цезий и рубидий минералов, который имеет названные выше признаки способа.

Задача изобретения состоит в том, чтобы, исходя из приведенного уровня техники, дать способ, который при высокой степени выхода продукта и плотности суспензии, составляющей выше 8 вес.%, обеспечит уменьшение степени размола используемого минерала при незначительном избытке окиси кальция по отношению к двуокиси кальция.

Согласно изобретению задача решается за счет того, что некальцинированный поллуцит и/или кальцинированный лепидолит, имеющие средний размер зерен до 0,5 мм, подвергаются разложению в автоклаве с поворотной трубой, причем мольное соотношение SiO2 к CaO находится в диапазоне между 1:2,5 и 1: 1,25.

Плотность суспензии определяется как концентрация поллуцита и/или лепидолита, а также нерастворенного CaO или Ca(OH) в воде.

Неожиданным образом в указанных условиях проведения способа при гидротермальном разложении в автоклаве с вращающейся трубой можно, как правило, извлекать более чем 90 вес.% содержащегося в минерале цезия и рубидия и очень дешево превращать их в солевой раствор цезия и рубидия с плотностью от 1,6 до 3,3 г/см3, причем сравнительно незначительными являются как расходы, связанные с размолом, за счет использования минералов со средним размером зерен до 0,5 мм, так и избыток CaO по сравнению с содержащимся в минеразе SiO2.

Другая предпочтительная форма выполнения способа осуществляется так, как это изложено в пункте 2 формулы изобретения. Эта форма выполнения способа согласно изобретению позволяет получить солевые растворы цезия и рубидия с плотностью от 1,6 до 3,3 г/см3, причем получают растворители, которые должны быть в меньшей степени сконцентрированы, в результате этого способ становится дешевле.

В предпочтительном варианте получают солевые растворы цезия и рубидия, тем, что для проведения реакции обмена растворитель, оставшийся, в случае необходимости, после отделения ионов кальция, а также лития используют в качестве кислот муравьиной, уксусной, лимонной, хлористоводородной, бромистоводородной или серной кислоты или же как кислотные ангидриды - окись углерода, трехокись молибдена или трехокись вольфрама.

Плотность солевого раствора цезия и рубидия, предпочтительным образом, варьируется в широких пределах за счет того, что примешивают насыщенные растворы соли щелочного металла или щелочно-земельного металла, причем анионы обоих солевых растворов одинаковы.

В частности, полученные согласно способу растворы формиата цезия и рубидия смешиваются с насыщенными растворами формиата калия для установления плотности от 1,6 до 2,26 г/мл, а полученные согласно способу растворы бромида цезия и рубидия смешиваются с насыщенными растворами бромида кальция с получением солевых растворов с плотностью от 1,68 до 1,80 г/мл.

Далее, преимущество всего способа в целом состоит в том, что отделенные карбонаты могут быть использованы для получения лития, а нерастворимое твердое вещество, оставшееся после гидротермального разложения, может применяться в качестве добавки к свежеразмолотой цементной муке. Таким образом, предложенный способ не имеет отходов производства (таких как зола, шлак, цементная пыль, сточные воды).

Более подробно изобретение поясняется на следующих примерах.

Опытный материал Содержание - Поллуцит оригинал в нем - вес. % Cs - 23,5 Rb - 0,97 Al - 8,9 Na - 1,07 K - 1,09 Li - 0,30 Ca - 0,08
SiO2 - 51,6
Последующие опыты были проведены с некальцинированным поллуцитом.

Пример 1.

В емкости, рассчитанной на получение осадка, получают и предварительно нагревают 12 вес. %-ную суспензию из поллуцита, гидроксида кальция и воды. Мольное соотношение SiO2 и CaO составляет 1:1,4. Величина осадка составляет 8 м3. Этой суспензией загружается автоклав с поворотной трубой.

Автоклав с вращающейся трубой состоит из горизонтально установленной, цилиндрической емкости высокого давления с общим объемом, равным около 13 м3 и рабочим объемом, равным около 9 м3. Автоклав с поворотной трубой приводится во вращение посредством зубчатого привода, причем работать можно на двух скоростях (4 или 7 оборотов в минуту). Нагрев осуществляется путем непосредственного нагнетания пара в суспензию. Разложение поллуцита осуществляется при вращении при температуре около 220oC и давлении от 21 до 23 бар в течение 1,5 часов. По окончании времени реакции давление снимается, и с помощью остаточного давления суспензия выдавливается в фильтрационный приемник. Автоклав промывается водой при температуре около 150oC, и промывная вода также подается под давлением в фильтрационный приемник. Отделение реакционного раствора от нерастворимых твердых веществ осуществляется в барабанном фильтре. После этого лепешка вновь смешивается с водой и подается к фильтровальным патронам высоконапорного фильтра. Полученная суспензия обезвоживается при давлениях до 150 бар в фильтровальных патронах высоконапорного фильтра. Значения полученной остаточной влажности составляют менее чем 30%. Состоящий из фильтрата и промывной воды прозрачный раствор упаривается. Во время происходящего испарения воды растворенные твердые вещества выпадают в осадок. После концентрации приблизительно до 15% от исходного объема в оставшуюся суспензию вдувается двуокись углерода, для того чтобы выделить ионы кальция и лития в виде карбоната. После этого посредством фильтровального нутча происходит фильтрация до состояния прозрачности. К фильтрату дозированно добавляется муравьиная кислота до тех пор, пока не будет достигнуто значение pH = 6. Представленные в таблице 1 результаты были достигнуты с помощью поллуцита с размером зерен 0,01 мм.

Пример 2.

Гидротермальное разложение проводится согласно примеру 1, с той лишь разницей, что поллуцит имеет средний размер зерен 0,2 мм. Результаты этого разложения представлены в таблице 2.

Пример 3.

Гидротермальное разложение проводится согласно примеру 1, с той лишь разницей, что соответственно промывной фильтрат нерастворенных твердых веществ используется для затирания в последующей варке. Результаты приведены в таблице 3. В таблице 3 колонка 2 означает количество цезия в свежем использованном минерале, а колонка 3 - количество цезия в промывном фильтрате предшествующей варки. Колонка 4 показывает общее количество из первоначального и промывного фильтрата, в колонке б приведены весовые проценты, а в колонке 7 дается абсолютное содержание цезия в варочном фильтрате, состоящем из первоначального и промывного фильтрата. В колонке 8 указан выход цезия в процентах, соотнесенный с содержанием в минерале.

Пример 4.

Гидротермальное разложение проводится аналогично примеру 3, с той разницей, что используется поллуцит со средней величиной зерен = 0,2 мм. Результаты приведены в таблице 4, причем колонки имеют значение, аналогичное значениям, приведенным в таблице 3.

Пример 5.

Солевые растворы, содержащие цезий и рубидий, получают с плотностью от 1,6 до 2,26 г/мл, когда смешивают полученный по изобретению раствор формиата рубидия согласно таблице 5 с насыщенным раствором формиата калия.

Пример 6.

Солевые растворы, содержащие цезий и рубидий, получают с плотностью от 1,68 до 1,80 г/мл, когда смешивают полученные по изобретению растворы бромида рубидия согласно таблице 6 с насыщенным раствором бромида кальция.


Формула изобретения

1. Способ получения солевого раствора цезия и/или рубидия с плотностью между 1,6 и 3,3 г/см3 путем гидротермального разложения некальцинированного поллуцита и/или кальцинированного лепидолита в течение 0,5 - 3 ч водным раствором Са(ОН)2 при температуре разложения от 200 до 280oC и давлении от 15 до 65 бар, а также при плотности суспензии в интервале между 8 м 18 вес.% путем отделения нерастворимых твердых веществ, в случае необходимости, путем удаления ионов кальция и лития с помощью обработки газом - двуокисью углерода и путем отделения выпавших в осадок из фильтрата разложения карбонатов, а также путем образования солей цезия и рубидия добавлением кислоты или кислотного ангидрида до значения рН, равного по меньшей мере 6, причем для получения плотности солевого раствора цезия и рубидия производится концентрация раствора путем упаривания после варки, после отделения выпавших в осадок карбонатов и/или после добавления кислоты или кислотного ангидрида, отличающийся тем, что некальцинированный поллуцит и/или кальцинированный лепидолит со средним размером зерен до 0,5 мм разлагается в автоклаве с вращающейся трубой, при этом мольное соотношение SiО2 к СаО находится в диапазоне 1 : 2,5 и 1 : 1,25.

2. Способ по п.1, отличающийся тем, что исходный фильтрат, полученный после отделения карбонатов, и/или промывочный фильтрат используются в качестве затирочной жидкости для последующего разложения.

3. Способ по пп.1 и 2, отличающийся тем, что гидротермальное разложение происходит при мольном соотношении SiO2 и СаО, равном приблизительно 1 : 1,4, и при плотности суспензии, равной приблизительно 15 вес.%.

4. Способ по пп.1 - 3, отличающийся тем, что к солевому раствору цезия и/или рубидия примешивают насыщенный раствор соли щелочного или щелочно-земельного металла, причем анионы обоих солевых растворов одинаковы.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к области синтеза новых химически чистых цезийсодержащих соединений, которые могут быть использованы в качестве веществ-матриц для изготовления активной части радионуклеидных источников, в частности источников ионизирующего излучения на основе цезия-137

Изобретение относится к способу получения рубидиевых комплексов дифторидов 3 а -переходных металлов состава RbMFa, где М- Мп, Со, Ni, Си или Zn, и позволяет повысить чистоту конечного продукта и безопасность процесса

Изобретение относится к переработке азотно-кислых концентратов цезия - 137

Изобретение относится к экстракционной технологии и может найти применение для извлечения и разделения цезия и рубидия как в технологии, так и в аналитической химии

Изобретение относится к способу концентрирования цезия из растворов осаждением и позволяет повысить степень концентрирования цезия и уменьшить объем осадка

Изобретение относится к экстракционным способам извлечения цезия и стронция, может найти применение при переработке радиоактивных отходов и аналитическом определении цезия и стронция, позволяет упростить состав экстракционной смеси, повысить емкость по цезию и уменьшить потери растворителя

Изобретение относится к неорг
Изобретение относится к твердой редиспергируемой эмульсии, представляющей собой прямую эмульсию смягчителя белья, инкапсулированного в стабилизированную ионами многовалентных металлов, выбранных из Са2+ Sr2+, Ba 2+ Al3+, Cu2+, Zn2+ оболочку из полисахарида, которая исходно не растворима в воде, но за счет отдачи ионов металлов становится растворимой в воде

Изобретение относится к технологии производства неорганических веществ из руд, более конкретно к способу получения растворов гидроксида цезия

Изобретение может быть использовано в фундаментальных исследованиях и при разделении обычных и сверхтекучих жидкостей. Способ получения оксидных расплавов, обладающих квантовыми свойствами и сверхтекучестью при температурах 850-1050 °С, включает сплавление борного ангидрида с углекислыми солями калия или цезия в следующих соотношениях в расчете на оксиды: B2О3 - 99,0% мол., K2О - 1,0% мол. или B2О3 - 94,0-99,0% мол., Cs2О - 1,0-6,0% мол. Гомогенизация расплава достигается тщательным перемешиванием при помощи платиновой мешалки. Изобретение позволяет получать материалы, обладающие квантовыми свойствами: сверхтекучестью и сверхпроводимостью, аномальной теплопроводностью. 3 ил., 1 табл.

Изобретение относится к неорганической химии, в частности к синтезу сложного гидросульфатфосфата цезия состава Cs6(H2SO4)3(H2PO4)4, который может быть использован в качестве среднетемпературного твердого протонпроводящего материала. Cs6(H2SO4)3(H2PO4)4 получают методом твердофазного синтеза из шихты с мольным соотношением CsHSO4:CsH2PO4:CsH5(PO4)2, равным 3:2:1, при температуре 60-90°C. Полученный Cs6(H2SO4)3(H2PO4)4 в виде поликристаллического порошка обладает большим значением протонной проводимости и меньшим значением температуры фазового перехода. 2 ил.
Наверх