Цифровой термометр

 

Изобретение может быть использовано при построении цифровых термометров, работающих с термопреобразователями, имеющими частотный выходной сигнал, например пьезокварцевыми. Цифровой термометр содержит термопреобразователь с частотным выходом, генератор опорной частоты, первый и второй элементы И, реверсивный счетчик, суммирующий счетчик, триггер, преобразователь кода в частоту, преобразователь частоты в код и блок индикации. В основу построения термометра положен принцип кратного весового дополнения с автоматической компенсацией за счет наличия отрицательной обратной связи. Отрицательная обратная связь оперативно устанавливает необходимый режим динамического равновесия. Такое выполнение устройства позволяет повысить точность и помехозащищенность измерений. 1 ил.

Предлагаемое изобретение относится к температурным измерениям и может быть использовано при построении цифровых термометров, работающих с термопреобразователями, имеющими частотный выходной сигнал, например, пьезокварцевыми термопреобразователями [1], [2].

Предлагаемое изобретение предназначено для работы с термопреобразователями с частотным выходным сигналом, у которых выходная частота F связана с температурой t зависимостью [3].

Известно устройство для измерения температуры [4], решающее поставленную задачу. В этом устройстве термочастотная характеристика реального термопреобразователя линеаризируется с помощью кусочно- линейной аппроксимации.

К недостаткам цифрового термометра [4] следует отнести низкую точность вследствие наличия методической погрешности при реализации аппроксимации квадратичной функции, а также низкую помехоустойчивость из-за необходимости последовательного выбора диапазонов значений температур при отсутствии реализации контроля за состоянием выходной информации.

Наиболее близким по технической сущности к заявляемому устройству является цифровой термометр [5], который и выбран в качестве прототипа. Прототип по сравнению с аналогом обладает более высокими точностью и помехоустойчивостью.

Прототип, содержащий термопреобразователь с частотным выходом, первый генератор опорной частоты, первый и второй элементы И, реверсивный счетчик, суммирующий счетчик, триггер, преобразователь кода в частоту, преобразователь частоты в код, блок индикации, подключенный к выходу преобразователя частоты в код, вход которого соединен с выходом второго элемента И, а входы этого элемента объединены соответственно: первый - с вычитающим входом реверсивного счетчика и выходом преобразователя кода в частоту, второй - с первым входом первого элемента И и с выходом триггера, установочный вход которого подключен к выходу термопреобразователя, а сбрасывающий - к выходу переноса счетчика, соединенного счетным входом с выходом первого элемента И, второй вход которого объединен с выходом генератора частоты, при этом выход реверсивного счетчика подключен к кодовому входу преобразователя кода в частоту, кроме того, прототип содержит также третий элемент И и второй генератор опорной частоты, подключенный к опорному частотному входу преобразователя кода в частоту и к первому входу третьего элемента И, второй вход которого соединен со вторым входом второго элемента И, а выход третьего элемента И подключен к суммирующему входу реверсивного счетчика.

В основу построения устройства положен принцип широтной модуляции импульсных последовательностей с их автоматической компенсацией за счет наличия отрицательной обратной связи, оперативно устанавливающей необходимый режим динамического равновесия. В результате обеспечивается линеаризация характеристики термопреобразователя путем непосредственного функционального воспроизведения квадратичной зависимости.

К недостаткам прототипа следует отнести сравнительно высокую сложность.

Задачей, решаемой предлагаемым изобретением, является создание более простого и надежного устройства, обладающего хорошей помехоустойчивостью.

Поставленная задача решается за счет замены умножения частоты на ШИМ-сигнал на весовое дополнение реверсивного счетчика по сигналу частоты от датчика, благодаря чему реверсивный счетчик сразу увеличивает свое содержимое на n единиц.

Для решения поставленной задачи предлагаемое устройство содержит также, как и известное, термопреобразователь с частотным выходом, генератор опорной частоты, первый и второй элементы И, реверсивный счетчик, суммирующий счетчик, триггер, преобразователь кода в частоту, преобразователь частоты в код и блок индикации, подключенный к выходу преобразователя частоты в код, вход которого соединен с выходом второго элемента И, а входы этого элемента объединены соответственно первый - с вычитающим входом реверсивного счетчика и выходом преобразователя кода в частоту, второй - с первым входом первого элемента И и с выходом триггера, установочный вход которого подключен к выходу термопреобразователя, а сбрасывающий - к выходу переноса суммирующего счетчика, соединенного счетным входом с выходом первого элемента И, второй вход которого объединен с выходом генератора опорной частоты, причем выход реверсивного счетчика подключен к кодовому входу преобразователя кода в частоту, но, в отличие от прототипа, из предлагаемого устройства удалены второй генератор опорной частоты и третий элемент И, причем выход триггера соединен с суммирующим по весовому коэффициенту n входом реверсивного счетчика, а выход генератора опорной частоты - с частотным входом преобразователя кода в частоту.

На чертеже изображена функциональная схема предлагаемого цифрового термометра.

Цифровой термометр, содержащий термопреобразователь 1 с частотным выходом, генератор опорной частоты 2, первый 3 и второй 4 элементы И, реверсивный счетчик 5, суммирующий счетчик 6, триггер 7, преобразователь 8 кода в частоту, преобразователь 9 частоты в код и блок индикации 10, подключенный к выходу преобразователя 9 частоты в код, вход которого соединен с выходом второго элемента И 4, а входы этого элемента объединены соответственно: первый - с вычитающим входом реверсивного счетчика 5 и выходом преобразователя 8 кода в частоту, второй - с первым входом первого элемента И 3 и с выходом триггера 7, установочный вход которого подключен к выходу термопреобразователя 1, а сбрасывающий - к выходу переноса суммирующего счетчика 6, соединенного счетным входом с выходом первого элемента И 3, второй вход которого объединен с выходом генератора опорной частоты 2, при этом выход реверсивного счетчика 5 подключен к кодовому входу преобразователя 8 кода в частоту, причем выход триггера 7 соединен с суммирующим по весовому коэффициенту n входом реверсивного счетчика 5, а выход генератора опорной частоты 2 - с частотным входом преобразователя 8 кода в частоту.

Устройство работает следующим образом.

Генератор опорной частоты 2 вырабатывает опорную импульсную последовательность с частотой F1, причем частота F1 должна быть много больше выходной частоты F(t) термопреобразователя 1.

Пусть в начальный момент времени счетчики 5 и 6, триггер 7 находятся в нулевом состоянии, а элементы И 3 и 4 закрыты.

Первый импульс с выхода термопреобразователя 1 передается на вход установки S триггера 7. В результате триггер 7 устанавливается в единичное состояние и открываются элементы И 3 и 4. Через элемент И 3 постоянный частотный сигнал F1, поступает с генератора 2 на суммирующий счетчик 6. Счетчик 6 начинает считать и переполняется через время , тем самым сбрасывая триггер 7 в исходное состояние. Второй импульс с выхода термопреобразователя 1 снова устанавливает триггер 7 в единичное состояние на время . Далее процесс повторяется с частотой F(t) термопреобразователя 1, причем устройство работает в непрерывном режиме. Таким образом, на выходе триггера 7 формируется последовательность импульсов постоянной длительности , следующая с частотой F(t).

При установке триггера 7 в единичное состояние на суммирующий по весовому коэффициенту n вход реверсивного счетчика 5 поступает единица, и счетчик 5 сразу увеличивает свое содержимое на n единиц. Выходной код реверсивного счетчика подается на кодовый вход преобразователя 8 кода в частоту. При этом на его опорный частотный вход поступает постоянный частотный сигнал F1 с генератора 2. В результате на выходе преобразователя 8 кода в частоту формируется частотный сигнал, который подается на вычитающий вход реверсивного счетчика 5 и на первый вход элемента И 4. Под воздействием импульсов, поступающих на вычитающий вход реверсивного счетчика 5, его выходной код начнет уменьшаться, и, соответственно, уменьшится код на входе преобразователя 8 кода в частоту, а следовательно, уменьшится частота на выходе этого преобразователя. Далее процесс повторяется, и при непрерывном режиме достигается состояние динамического равновесия, когда среднее число единиц, на которое реверсивный счетчик 5 увеличивает свое содержимое при поступлении импульсов на суммирующий по весовому коэффициенту n вход этого счетчика, становится равным числу единиц, на которое реверсивный счетчик 5 уменьшает свое содержимое при поступлении импульсов на вычитающий вход.

Частотный сигнал с выхода преобразователя 8 кода в частоту за время , при котором элемент И 4 открыт единичным сигналом с выхода триггера 7, поступает через этот элемент И на вход преобразователя 9 частоты в код. В установившемся режиме блок индикации 10 будет фиксировать результат работы устройства с выхода преобразователя 9 частоты в код.

В основу построения устройства положен принцип кратного весового дополнения с автоматической компенсацией за счет наличия отрицательной обратной связи, оперативно устанавливающей необходимый режим динамического равновесия.

Цифровой термометр работает в непрерывном режиме. Он обеспечивает линеаризацию характеристик термопреобразователей с зависимостью где F(t) - выходная частота термопреобразователя, t - температура, a - постоянный коэффициент.

На выходе преобразователя 9 частоты в код за принятый интервал времени преобразования T9, определяемый конструкцией этого преобразователя 9, формируется тождественное выражение в виде кода Таким образом, код Nx, представляемый блоком индикации 10, будет пропорционален квадрату частоты термопреобразователя 1 с коэффициентом пропорциональности то есть
В результате обеспечивается линеаризация характеристики термопреобразователя 1.

В соответствии с выражением (1) выходной код Nx преобразователя 9 однозначно связан с измеряемой температурой Nx = t. Этот код отображается цифровым индикатором блока 10 индикации.

К числу достоинств предлагаемого устройства можно отнести упрощение и повышение надежности за счет применения одного генератора опорной частоты вместо двух генераторов и применения двух элементов И вместо трех в прототипе. В качестве преобразователя кода в частоту можно использовать, например, микросхемы К155ИЕ8, а в качестве преобразователя частоты в код - счетчики той же серии.

Таким образом, заявляемое устройство является к тому же более технологичным по реализации, чем прототип, а при сопоставимой конструкторско-технологической среде проектирования будет иметь меньшие габариты и вес.

Список литературы
1. Регистрирующая аппаратура для вибрационно-частотных датчиков. Под редакцией к.т.н. Плискина Ю.С., М., 1967 г., ч. 1 и 2.

2. Новицкий П.В. Проблема создания частотных датчиков для всех электрических и неэлектрических величин. Измерительная техника, 1961 г., N 4.

3. Кудрявцев В.Б., А.П. Лысенко, Милохин Н.Т. и др. Прецизионные частотные преобразователи автоматизированных систем контроля и управления. М., "Энергия", 1974 г.

4. А.С. СССР N 1229604, кл. G 01 K 7/32, 1986, N 17.

5. А.С. СССР N 1520360, кл. G 01 K 7/32, 1989, N 41.


Формула изобретения

Цифровой термометр, содержащий термопреобразователь с частотным выходом, генератор опорной частоты, первый и второй элементы И, реверсивный счетчик, суммирующий счетчик, триггер, преобразователь кода в частоту, преобразователь частоты в код и блок индикации, подключенный к выходу преобразователя частоты в код, вход которого соединен с выходом второго элемента И, а входы этого элемента объединены соответственно первый - с вычитающим входом реверсивного счетчика и выходом преобразователя кода в частоту, второй - с первым входом первого элемента И и с выходом триггера, установочный вход которого подключен к выходу термопреобразователя, а сбрасывающий - к выходу переноса суммирующего счетчика, соединенного счетным входом с выходом первого элемента И, второй вход которого объединен с выходом генератора опорной частоты, причем выход реверсивного счетчика подключен к кодовому входу преобразователя кода в частоту, отличающийся тем, что выход триггера соединен с суммирующим по весовому коэффициенту n входом реверсивного счетчика, а выход генератора опорной частоты - с частотным входом преобразователя кода в частоту.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к тепловым измерениям, а именно к устройствам для измерения температуры с бесконтактной (дистанционной) передачей сигнала от измерительного датчика к регистрирующему устройству

Изобретение относится к температурным измерениям и может быть использовано при построении цифровых термометров, работающих с термопреобразователями, имеющими частотный выходной сигнал, например пьезокварцевыми преобразователями

Изобретение относится к температурным измерениям, а именно к устройствам для контроля температурных воздействий на исследуемый обьект

Изобретение относится к температурным измерениям, в частности к контролю температурных воздействий на исследуемый обьект

Изобретение относится к термометрии, а именно к контактным датчикам температуры, и может использоваться в нефтяной, химической промышленности и коммунальном хозяйстве

Изобретение относится к термометрии, а именно к контактным датчикам температуры, и может использоваться при измерении температуры с минимальной глубиной погружения датчика в нефтяной, химической промышленности и коммунальном хозяйстве, в частности, в трубах малого диаметра

Изобретение относится к области измерительной техники, а именно к цифровым термометрам, работающим с термопреобразователями, представляющими измерительную информацию в импульсной форме

Изобретение относится к измерительной технике, предназначено для работы с термопреобразователями с частотным выходным сигналом и может быть использовано при измерениях температуры, например, в теплосчетчиках для повышения точности измерения температуры при одновременном упрощении устройства

Изобретение относится к электротехнике и может быть использовано при создании и применении устройств и систем для измерения температуры поверхностей, находящихся под напряжением

Изобретение относится к измерительной технике и может быть использовано в системах контроля окружающей среды и управления технологическими процессами. Согласно заявленному предложению осуществляют измерение частоты генератора, зависящей от параметров терморезисторов, располагаемых равномерно по объему исследуемого поля и соединенных с внешними конденсаторами фазирующей RC-цепочки, образующих совместно с усилителем генератор, соединенный через преобразователь частота-код и микроконтроллер, программу которого снабжают градуировочной характеристикой зависимости частоты от контролируемой температуры. Изобретение также предоставляет возможность коррекции инструментальной погрешности измерения во время тарировки после установки терморезисторов в контролируемой среде и установление значения частоты, соответствующей минимальной и максимальной средней температуры среды, при достижении которых включают дополнительный режим индикации. После обработки контроллером результат подают в канал регулирования или на индикатор температуры. Технический результат: повышение точности измерения температуры среды. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к термометрии и предназначено для работы с термопреобразователями с частотным выходным сигналом. Заявлен цифровой термометр, содержащий термопреобразователь с частотным выходом, генератор прямоугольных импульсов, реверсивный счетчик с прямыми динамическими входами, параллельный регистр с инверсным динамическим синхровходом, преобразователь код-частота (ПКЧ) и дополнительно введенное ПЗУ. Вычитающий вход реверсивного счетчика соединен с выходом ПКЧ, частотный вход которого соединен с выходом генератора прямоугольных импульсов, а суммирующий вход счетчика подключен к выходу термопреобразователя и синхровходу параллельного регистра. Выходы реверсивного счетчика подключены к входам параллельного регистра, выходы которого соединены с кодовыми входами ПКЧ и с входами ПЗУ, выходы которого являются выходами устройства. Предлагаемое изобретение обеспечивает функциональное преобразование импульсной информации за счет использования частотно-импульсной следящей системы компенсационного типа, обеспечивающей непрерывное отказоустойчивое формирование результата в соответствии с температурной характеристикой термопреобразователя. Технический результат: повышение точности измерения температуры. 1 ил.
Наверх