Плавучий турбулизируемый материал-носитель для биотехнологических процессов

 

Изобретение относится к плавучему турбулизируемому материалу-носителю, обрастающему микроорганизмами, который может применяться в способах и установках для глубокой водоподготовки, обработки сточных вод и шлама и ферментационной техники. Результат изобретения - создание материала-носителя для микробиологических процессов, который обеспечивает возможность одновременной аэробной, а также анаэробно-неокислительной обработки воды. В аэробном вихревом слое часть поверхности носителя заселена микроорганизмами, сорбентами, энзимами, антигенами, живущими в анаэробно-неокислительной среде. Основной материал состоит из полимерных веществ полиолефинов или их сополимеров. Он содержит органические и/или неорганические добавки, имеет сердечник из пеноматериала с замкнутыми ячейками и мелкопористой структурой, поверхность структурирована и профилирована, частицы имеют форму полых цилиндров длиной от 3 до 25 мм, с наружным диаметром от 3 до 25 мм, внутренним диаметром от 2 до 24 мм и с удельным весом от 0,4 до 0,98 г/см3. Свойства носителя регулируются добавкой 0,1-2,0% вспенивающих веществ - бикарбонат с лимонной кислотой, крахмал, сахар и/или активированный уголь. 5 з.п.ф-лы.

Изобретение относится к плавучему турбулизируемому материалу- носителю, обрастающему микроорганизмами, который может применяться в способах и установках для глубокой водоподготовки, обработки сточных вод и шлама и ферментационной техники.

Известно применение различных материалов-носителей в установках для обработки воды и сточных вод с целью повышения концентрации биомассы и, тем самым, производительности очистки.

В патенте ГДР DD 261921 A3 описан способ изготовления зернистого материала-носителя для биотехнологических процессов с удельным весом менее 0.5 г/см3, который получают термической усадкой пенополистироловых хлопьев. В патенте ГДР DD 264887 А1 этот материал дополнительно покрыт по своей поверхности адсорбентами и/или инертными наполнителями.

Материалы-носители, имеющие покрытие, описаны также, например, в патентах ФРГ DE 2945609 А1, DE 3006171 В1 и DE 3105887 C2.

Всем этим материалам присущ недостаток, заключающийся в том, что при их получении образуются частицы различной формы, разной величины и плотности, что приводит к различным свойствам плавучести, вследствие чего затрудняется надежное и управляемое осуществление способа при определенных условиях. Кроме того, микроорганизмы заселяются исключительно на поверхности материала-носителя. Благодаря этому могут получаться только микроорганизмы с аэробными и анаэробными требованиями к среде. В аэрируемом вихревом слое носители заселяются почти исключительно микроорганизмами, живущими в аэробных условиях. Не существует полостей, в которых вследствие недостатка кислорода протекают и анаэробно-неокислительные процессы, например, процессы денитрификации.

Известно также применение материалов-носителей в виде пенопластов. В патенте ФРГ DE 3137062 применяются тела из пенопластов с открытыми ячейками на основе полиуретана в кусковой форме. В патенте ГДР DD 269610 A1 описывается применение сжимаемых материалов-носителей с открытыми порами в аэротенках. В патенте ФРГ DE 3719418 С1 эти тела из пенопластов снабжены клейким слоем, а на или в открытые поры наносятся или вводятся адсорбционные частицы.

Эти материалы имеют преимущество, заключающееся в том, что микроорганизмы с различными требованиями к среде заселяются не только на наружных, но и на внутренних слоях, благодаря чему может достигаться более высокая производительность очистки за счет того, что процессы нитрификации и денитрификации протекают одновременно.

Однако на практике возникают проблемы, состоящие в том, что обрастающие гранулы пенопластов приобретают удельный вес от 0.9 до 1.1 г/см3. Вследствие этого становится невозможным их надежное удерживание в реакторах с помощью погружных стенок. Удерживание может осуществляться с помощью сит, сеток или перфорированных пластин. Это приводит к тому, что применение таких носителей возможно только в установках с хорошо функционирующей предварительной очисткой и что диаметр этих носителей должен составлять, по меньшей мере, 2 см. Любое же укрупнение означает ограничение удельной поверхности роста и одновременно повышенное использование объема реактора без эквивалентного повышения биоактивности. Другим недостатком носителей из пенопластов является забивание открытых пор увеличивающимся обрастанием и недостаточное проникновение очищаемой среды во внутренние слои.

Задачей изобретения является создание материала-носителя для микробиологических процессов, который обеспечивает возможность одновременной аэробной, а также анаэробно-неокислительной обработки воды. В аэробном вихревом слое часть поверхности должна заселяться также микроорганизмами, живущими в анаэробно-неокислительных условиях. Кроме того, материал должен изготавливаться в узком спектре определенных плотностей и размеров и иметь большую адсорбционно эффективную поверхность роста.

Задача изобретения решается материалом согласно пункту 1 формулы изобретения. Признаки, относящиеся к формам выполнения, описаны в подпунктах 2 - 6 формулы изобретения.

Основной полимерный материал из полиолефинов или их сополимеров, например, поливинилацетат, расплавляют и с добавкой органических и/или неорганических веществ в качестве вспенивающего агента формуют в экструдере с соплом специальной формы с получением цилиндрических полых заготовок определенных размеров. Благодаря этому получается сердечник из пеноматериала с закрытыми ячейками и мелкопористые ячеистые структуры. В качестве вспенивающего агента применяют 0.1 - 2.0%-ные бикарбонаты с лимонной кислотой и/или крахмал и/или сахар и/или активированный уголь. Внутренняя и/или наружная поверхность в зависимости от типа применяемого вспенивающего агента за счет вспучивания может выполняться пористой. Поверхность структурирована и профилирована. Плотность материала должна составлять от 0.4 до 0.98 г/см3. Вскоре после выхода из сопла еще не затвердевшая поверхность может покрываться сорбентами и/или энзимами и/или антигенами и/или другими биохимическими препаратами. Для повышения удельной поверхности роста применяемое сопло снабжено продольными канавками, благодаря чему на материале-носителе образуется рифленая поверхность. После отверждения полученный стержень разрезают на определенные длины.

Полученный материал-носитель является плавучим, хорошо турбулизируемым, а также механически и биологически очень стойким. Он имеет большую адсорбционно эффективную поверхность роста. Материал можно применять с большим преимуществом в биотехнологических процессах, в частности, в способах для глубокой обработки воды с удалением азота. В зависимости от потребности, носители могут использоваться в реакторах с кипящим или неподвижным слоем для аэробных, анаэробных или неокислительных способов. Удерживание в реакторах может без проблем реализоваться с помощью специально расположенных погружных стенок. Особенное преимущество получается за счет того, что в зависимости от длины частиц носителя внутри их могут создаваться поверхности роста, которые и в аэробном кипящем слое в обрастающем состоянии недостаточно снабжаются кислородом, и за счет этого там создаются анаэробно-неокислительные условия среды. За счет этого на частицах носителя в наиболее узком пространстве одновременно протекают аэробные и анаэробные неокислительные процессы. Отношение аэробных и анаэробно-неокислительных поверхностей роста может регулироваться по длине отдельных частиц носителя. Если наиболее предпочтительными являются аэробные процессы, например, нитрификация или аэробное разложение с биохимическим потреблением кислорода, то тогда носители, применяемые на этой стадии способа, имеют длину между 3 - 6 мм. Если носители удлиняются до 15 - 25 мм, тогда внутри селятся микроорганизмы, которые способны к денитрификации.

Материал-носитель, его изготовление и возможности его применения описываются ниже на примере установки для обработки сточных вод со значительным удалением азота путем нитрификации и денитрификации.

Поливинилацетат расплавляют и смешивают с 0.6% гранулята, содержащего 40% бикарбоната с лимонной кислотой в качестве вспенивающего агента. Эту смесь формуют в пруток в экструдере с соплом специальной формы с получением полого цилиндра с рифленой в продольном направлении поверхностью. Он имеет наружный диаметр, равный 5 мм, и внутренний диаметр, равный 4 мм. Рифления имеют глубину около 0.6 мм. Затем пруток после охлаждения в ванне с водой разрезают на отрезки длиной 5 мм. При этом получают на каждую частицу носителя поверхность роста свыше 2.7 см2 и на каждый м3 насыпного веса - поверхность свыше 950 м2.

Таким же образом изготавливают вторую партию с длиной носителя, равной 15 мм.

Вторую партию задают на ступень нитрификации, а первую партию - на ступень денитрификации установки для обработки сточных вод с удалением азота до соответственно 45%. Материал-носитель ступени нитрификации приводят в сильно псевдоожиженное состояние путем подвода сжатого воздуха, в то время как частицы носителя на ступени денитрификации с помощью медленно работающей мешалки постоянно находятся в контакте с обрабатываемой сточной водой. Всплывающий материал-носитель удерживается на соответствующей стадии способа погружными стенками, имеющими специальную форму.

Материал-носитель аэрируемой ступени нитрификации заселяется на наружных поверхностях, хорошо снабжаемых кислородом прежде всего микроорганизмами, живущими в аэробных условиях, в частности, нитрифицирующими бактериями. Сравнительно медленно растущие нитрификанты на этой ступени постоянно остаются с носителем и за счет этого обеспечивают за сравнительно короткий срок биохимическое превращение содержащегося в сточной воде аммония в нитрат. Из-за незначительной турбуленции средний участок внутри частиц, имеющих форму полого цилиндра, сильно обрастает самыми различными микроорганизмами. Снабжение кислородом в этой зоне ограничено. Здесь заселяются, преимущественно, такие бактерии, которые могут расти в анаэробной и неокислительной среде. Большинство из этих микроорганизмов в состоянии денитрифицировать нитрат, микробиологически полученный на аэрируемых поверхностях роста, с использованием растворимых соединений углерода в молекулярный азот. Следовательно, уже на ступени нитрификации часть азота удаляется.

Полное разложение нитрата происходит на следующей неаэрируемой ступени денитрификации. На ней частицы носителя вследствие анаэробно-неокислительных соотношений в среде заселяются, прежде всего, микроорганизмами, которые в состоянии использовать кислород, связанный в ион нитрата. Молекулярный азот выходит из установки в газообразной форме.

Благодаря применению материала-носителя согласно изобретению в установке для обработки сточных вод с удалением азота, объемная нагрузка, связанная с биохимическим потреблением кислорода, удваивается по сравнению с известными параметрами до 0.8 - 1.0 кг биохимически потребляемого кислорода /м3 без возникновения отрицательных воздействий на степень удаления. Этот эффект достигается за счет специфически более высокой концентрации биомассы в бассейне. Так, на каждый м3 насыпного объема замеряют до 5 кг биомассы в виде фиксируемого носителем сухого вещества. В промежутках между носителями могло получаться еще около 2.5 кг сухого вещества. За счет этого общее количество биомассы составляет приблизительно 7-8 кг сухого вещества. Такие концентрации не достигаются в обычных установках для обработки сточных вод. Устройство для последующего осветления, необходимое для отделения биомассы от очищенных сточных вод, может быть уменьшено на 35% вследствие высокой доли содержания фиксируемой носителем биомассы. Количество направляемой обратно биомассы может быть также снижено на 40% от подводимого количества сточных вод. При низких нагрузках притока удалось полностью отказаться от возврата биомассы.

Формула изобретения

1. Плавучий турбулизируемый материал-носитель для биотехнологических процессов со следующими признаками: основной материал состоит из полимерных веществ, содержит органические и/или неорганические добавки, он имеет стержень из пеноматериала с замкнутыми ячейками и мелкопористую структуру ячеек, поверхность структурирована и профилирована, имеет форму цилиндрических полых тел, длина от 3 до 25 мм, наружный диаметр от 3 до 25 мм, внутренний диаметр от 2 до 24 мм и плотность 0,4 - 0,98 г/см3.

2. Материал-носитель по п.1 со следующими признаками: поверхность покрыта сорбентами и/или энзимами, и/или антигенами, и/или другими биохимическими препаратами.

3. Материал-носитель по пп.1 и 2 со следующими признаками: полимерными веществами являются полиолефины или их сополимеры, например, поливинилацетат.

4. Материал-носитель по пп.1 - 3 со следующими признаками: насыпной вес, плотность и свойства плавучести могут регулироваться путем вспучивания посредством добавки химических и/или органических вспенивающих средств в количестве от 0,1 до 2,0%.

5. Материал-носитель по п. 4 со следующими признаками: вспенивающими средствами являются бикарбонаты с лимонной кислотой, и/или крахмал, и/или сахар, и/или активированный уголь.

6. Материал-носитель по пп.1 - 5 со следующими признаками: внутренняя и/или наружная поверхность является пористой и/или имеет продольные рифления.



 

Похожие патенты:

Изобретение относится к несущему элементу, предназначенному для использования в качестве носителя микробиологической пленки в процессе биологической очистки природных или сточных вод, причем несущие элементы перемещаются в воде

Изобретение относится к установкам очистки хозяйственно-бытовых и высококонцентрированных сточных вод, загрязненных органическими веществами, и может быть использовано, в частности, для очистки предприятий молочной и пищевой промышленности

Аэротенк // 2096345
Изобретение относится к технике микробной безреагентной очистки производственных сточных вод и может быть использовано на очистных сооружениях пищевой, мясомолочной, рыбоконсервной и в других отраслях промышленности

Изобретение относится к устройствам для очистки сточной и природной воды от органических веществ, железа и растворенных газов
Изобретение относится к очистке сточных вод от механических загрязнений и может быть использовано для первичной очистки сточных вод в мясоперерабатывающей, пищевой, целлюлозной, кожевенной и других отраслях промышленности

Изобретение относится к очистке сточных вод от механических примесей и может быть использовано на очистных сооружениях коммунального хозяйства, а также на кожевенных предприятиях и мясокомбинатах

Изобретение относится к очистке сточных вод и может быть использовано для задержания и извлечения твердых бытовых и производственных отбросов

Изобретение относится к установкам глубокой биологической очистки хозяйственно-бытовых и близких к ним по составу и количеству загрязняющих веществ промышленных сточных вод и может быть применено в коммунальном хозяйстве и различных отраслях промышленности при новом строительстве и реконструкции действующих очистных станций с аэротенками

Изобретение относится к устройствам для очистки воды от взвешенных л коллоидных примесей без обработки коагулянтами

Изобретение относится к способу и установке для очистки сточных вод

Изобретение относится к технике биологической очистки сточных вод

Изобретение относится к очистке промышленных сточных вод и может быть использовано как в аэробных, так и в анаэробных условиях для глубокой очистки и доочистки сточных вод

Изобретение относится к технологии очистки сточных вод ос применением физико-химических и биоадсорбционного методов и может быть использовано на предприятиях машиностроения, нефтепереработки, агропереработки, в коммунальном хозяйстве, где сточные воды содержат растворенные и тонкодиспергированные нефтепродукты, жиры, белки, ПАВ

Изобретение относится к комбинированным устройствам для очистки сточных вод и может быть использована в различных отраслях промышленности для удаления из сточных вод трудноокисляемых органических веществ

Изобретение относится к комбинированным устройствам для обработки сточных вод и может быть использовано для глубокой биологической очистки и доочистки городских и близких к ним по составу промышленных сточных вод от органических веществ и биогенных элементов

Изобретение относится к аэробной и анаэробной очистке сточных вод и может быть использовано для получения целевых продуктов с помощью иммобилизованных микроорганизмов и ферментов
Наверх