Сублимационная установка

 

Изобретение предназначено для переработки сублимирующихся материалов и может быть использовано в технологии урановых производств. Установка содержит конденсаторы с патрубками ввода и вывода технологического газа, ввода и вывода хладагента, источник криогенного хладагента, систему трубопроводов с запорной и регулирующей арматурой и емкость, сообщенную с источником хладагента в области паровой фазы хладагента и соединенную через регулирующий клапан с патрубком ввода хладагента в каждый конденсатор. Изобретение позволяет обеспечить более мягкое регулирование требуемой температуры охлаждения смеси газов и за счет упрощения аппаратурного оформления процесса подачи хладагента сократить затраты на изготовление и размещение оборудования. 2 ил.

Изобретение относится к оборудованию для переработки сублимирующихся материалов и может быть использовано в технологии урановых производств.

При переработке газовых смесей, содержащих гексафторид урана, фтор, фтористоводородную кислоту, кислород, азот и др., сублимационные процессы проводят во взаимозаменяемых сублимационных аппаратах, технологически связанных в группу, в которой головные сублимационные аппараты работают в режиме десублимации, а хвостовой сублимационный аппарат - в режиме доулавливания гексафторида урана. Такой режим работы сублимационных аппаратов требует регулирования температуры охлаждения газовой смеси в широком диапазоне.

Известна установка для улавливания возгоняющихся компонентов, содержащая сублимационный аппарат с теплообменным устройством и патрубками ввода и вывода технологического газа, ввода и вывода хладагента, источник хладагента, систему трубопроводов с запорной и регулирующей арматурой. В режиме десублимации в сублимационном аппарате твердая фаза осаждается на охлаждаемых поверхностях. При этом меняется термическое сопротивление теплообменной поверхности, и для поддержания в аппарате требуемой температуры охлаждения газа ограничивают его расход или снижают температуру хладагента, или увеличивают расход хладагента (см. заявку Японии N 59-20363, кл. B 01 D 7/02, 8/00, 1984 г.) Недостаток установки заключается в несовершенстве системы регулирования температуры охлаждения, приводящей или к снижению производительности аппарата, или к повышению энергозатрат на охлаждение поступающего в аппарат газа.

Известна установка, прототип, содержащая конденсаторы с патрубками ввода и вывода технологического газа, ввода и вывода хладагента, систему трубопроводов с запорной и регулирующей арматурой. В конденсаторах поддерживается разная температура охлаждения. В качестве хладагента используется жидкий азот, поступающий из источника хладагента сначала в первый конденсатор, из первого - во второй и т.д. Для поддержания более высокой температуры охлаждения во втором конденсаторе установлен воздушный теплообменник; а в третьем - электроподогреватель (см. а.с. N 1716574 кл. C 21 F 9/02, 1992 г.).

Такой процесс регулирования температуры охлаждения позволяет поддерживать свою температуру в каждом конденсаторе, но имеет сложное аппаратурное оформление.

Задачей изобретения является упрощение аппаратурного оформления процесса подачи хладагента в конденсаторы, работающие в разных режимах охлаждения.

Поставленная задача решается тем, что сублимационная установка, включающая конденсаторы с патрубками ввода и вывода технологического газа, ввода и вывода хладагента, источник криогенного хладагента, систему трубопроводов с запорной и регулирующей арматурой, снабжена емкостью, сообщенной с источником хладагента в области паровой фазы хладагента и соединенной через регулирующий клапан с патрубком ввода хладагента в каждый конденсатор.

На фиг. 1 представлена схема, сублимационной установки, на фиг. 2 - схема ввода в конденсатор паровой и жидкой фаз хладагента.

Устаовка содержит два головных конденсатора 1, 2, хвостовой конденсатор 3, источник криогенного хладагента 4, выполненный в виде трубы, на которой размещена емкость 5, сообщенная с паровой фазой хладагента. Емкость 5 снабжена патрубками 6, 7, 8, к которым подсоединены трубопроводы 9, 10, 11 для подачи жидкой фазы в конденсаторы 1, 2, 3 соответственно, и патрубки 12, 13, 14, к которым подсоединены трубопроводы 15, 16, 17 для подачи паровой фазы хладагента в эти аппараты. На трубопроводах 9, 10, 11 установлены запорные клапаны 16, 19, 20, а на трубопроводах 10, 16, 17 - регулирующие клапаны 21, 22, 23. Конденсаторы технологически связаны между собой через запорную арматуру так, что каждый конденсатор периодически работает в качестве десублимационного аппарата, сублимационного или хвостового. Для ввода технологического газа в конденсаторах 1, 2, 3 предусмотрены патрубки 24, 25, 26, для вывода - патрубки 27, 28, 29 соответственно. Хладагент вводится в аппарат через патрубки 30, 31, 32 и выводится через патрубки 33, 34, З5.

Установка работает следующим образом. Смесь газов по ступает из фторатора (не показан) через патрубок 24 в первый головной конденсатор 1, в котором улавливается основная масса гексафторида урана. Несконденсированные в аппарате 1 газы направляют в конденсатор 2 и далее в хвостовой аппарат 3. После заполнения конденсатора 1 твердым гексафторидом урана его отключают от источника хладагента и переводят в режим сублимации, а аппараты 2, 3 становятся головными.

В конденсаторе 1 поддерживают температуру охлаждения (- 55oC 5oC), в конденсаторах 2, 3 - (- 70oC 5oC). Хладагент в виде смеси жидкой и паровой фаз жидкого азота подают в конденсаторы 1, 2, 3 из источника жидкого азота 4 и емкости 5 через соответствующую запорную и регулирующую арматуру. Для подачи жидкой фазы хладагента заборные концы трубопроводов 9, 10, 11 размещены у дна источника хладагента, а для подачи паровой фазы заборные концы трубопроводов 15, 16, 17 размещены в верхней части емкости 5. Это дает возможность создать гидравлический столб жидкого хладагента, являющийся движущей силой для подачи паров жидкого азота за счет эжектирующего эффекта на клапанах 18 и 21, 19 и 22, 20 и 23. Размеры емкости 5 обусловлены требуемым объемом паровой фазы, потребляемой для охлаждения всех конденсаторов. Если конденсаторы размещены на значительном расстоянии друг от друга, то для подачи паровой фазы хладагента емкость 5 устанавливают на источнике хладагента 4 для каждого конденсатора. Тогда при определении размеров емкости 5 исходят из объема паровой фазы, потребляемой одним конденсатором.

Регулирование температуры охлаждения в конденсаторах 1, 2, 3 в требуемых пределах при работе их в режиме десублимации осуществляют подбором соотношения объемов фаз хладагента (жидкость-пар). За счет разницы коэффициентов теплоотдачи от жидкой и паровой фаз хладагента к поверхности охлаждения достигается точное и мягкое регулирование требуемой температуры охлаждения в конденсаторах 1, 2, 3 и более полное использование хладагента, при менее дорогостоящем аппаратурном оформлении процесса подачи хладагента.

Упрощение аппаратурного оформления установки позволит сократить затраты на изготовление и размещение дополнительного оборудования (теплообменников и электроподогревателей хладагента), с помощью которого ранее достигалось регулирование температуры охлаждения.

Формула изобретения

Сублимационная установка, включающая конденсаторы с патрубками ввода и вывода технологического газа, ввода и вывода хладагента, источник криогенного хладагента, систему трубопроводов с запорной и регулирующей арматурой, отличающаяся тем, что установка снабжена емкостью, сообщенной с источником хладагента в области паровой фазы хладагента и соединенной через регулирующий клапан с патрубком ввода хладагента в каждый конденсатор.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к технологии получения керамических изделий и может быть использовано в химической, атомной, электротехнической промышленности

Реактор // 2133146
Изобретение относится к оборудованию уранового производства, а именно к аппаратам для проведения процесса фторирования окислов урана

Изобретение относится к обработке обедненных урановых смесей, в частности к способу восстановления безводного фтористого водорода из обедненного гексафторида урана

Изобретение относится к ядерной энергетике и может быть использовано при корректировке изотопного состава ядерного топлива

Изобретение относится к способу селективного электрофторирования сплавов или смесей металлов на основе урана

Изобретение относится к технологии переработки высокообогащенного урана в низкообогащенный

Изобретение относится к технологии переработки высокообогащенного урана в низкообогащенный

Изобретение относится к области изготовления ядерного топлива для ядерных реакторов атомных электростанций, точнее к области восстановления (переработки) пригодности выгоревшего ядерного топлива для повторного использования в ядерном реакторе

Изобретение относится к технологии переработки высокообогащенного урана (ВОУ), особенно оружейного, в низкообогащенный уран (НОУ) энергетического назначения путем разбавления ВОУ

Изобретение относится к оборудованию для переработки сублимирующих метариалов и предназначено для проведения процесса сублимации-десублимации U F6, обогащенного U235

Изобретение относится к методу выделения диангидрида пиромеллитовой кислоты из высокотемпературного газа, содержащего его пары, в частности из высокотемпературного контактного газа, образующегося при парофазном окислении дурола

Изобретение относится к сублимационным аппаратам, предназначенным для получения веществ высокой степени чистоты, и может быть использовано в химической и пищевой промышленности и других отраслях народного хозяйства

Изобретение относится к оборудованию для очистки газов от твердых, жидких и газообразных примесей

Изобретение относится к технологии очистки N0 от NOa и паров Н20, применяемой в аналитическом приборостроении и позволяющей повысить степень очистки от NOa

Изобретение относится к способу и устройству для извлечения сорбиновой кислоты из газовой смеси и может быть использовано в пищевой и химической промышленности

Изобретение относится к технике очистки газов от токсичных веществ и может быть использовано в устройствах химической промышленности

Изобретение относится к устройствам для поверхностной десублимации, может быть использовано для очистки веществ от летучих компонен10тон и позволяет повысить степень очистки десублимата

Изобретение относится к способам извлечения редких металлов и может быть использовано для выделения рения и других редких и благородных металлов из газовых выбросов действующих вулканов, фумарольных газов, газовых эманаций лавовых потоков, лавовых озер
Наверх