Способ непрерывного разделения нефтесодержащего грунта

 

Способ содержит подготовку суспензии, ее обработку пульсирующим силовым полем в проточном аппарате непрерывного действия в поле низкочастотного вибрационного воздействия, в резонансном или околорезонансном режиме с диапазоном частот вибрации 10-60 Гц и виброускорений 3-20g, в газожидкостной среде, создаваемой путем подачи газа в проточный аппарат в пределах 10-25% объема обрабатываемой суспензии. Изобретение позволяет снизить энергоемкость очистки и повысить производительность. 1 ил.

Изобретение относится к области нефтедобычи и нефтепереработки и может быть использовано при решении экологических проблем для очистки нефтезагрязнений почвы, добыче нефтебитума из битуминозных пород.

Известные способы очистки грунтов и переработки битуминозных пород основаны на физико-механическом воздействии на суспензию.

В патенте N 2051165 способ разделения нефтесодержащих пород основан на акустическом воздействии на десорбирующую жидкость в диапазоне частот 1-10 кГц в роторно-пульсационном аппарате [1]. Десорбирующими жидкостями могут служить вода, нефтепродукты, растворители или их смеси. После обработки в роторно-пульсационном аппарате суспензия разделяется в колонне на всплывающий отделенный нефтепродукт и суспензию очищенного грунта, которая в свою очередь разделяется в гидроциклоне на твердую и жидкую фазу, возвращаемую обратно потоком в колонну.

Недостатками являются: большой расход энергии вследствие необходимости многократно пропускать поток через роторно-пульсационный аппарат из-за низкой эффективности разделения; необходимость применять по этой же причине десорбирующие растворители; необходимость ограничивать и строго контролировать размеры твердых частиц суспензий для предотвращения поломки роторно-пульсационного аппарата.

Для извлечения битума из битумсодержащих пород предложен способ по а.с. N 1824418, который заключается в кавитационной обработке водной суспензии порции породы с добавкой силиката натрия в режиме многократной рециркуляции потока в частотном диапазоне 10-60 Гц [2]. Недостатками являются периодичность обработки, высокая энергоемкость процесса вследствие нерационального воздействия на поток кавитационнык микропузырьков, образующихся в устройстве типа центробежный насос.

Наиболее близким к предлагаемому изобретению является способ переработки нефтебитуминозных запесоченных пород по з. N 93028183 (прототип), который заключается в гидроударном воздействии с гидромеханической кавитацией и получении нефтебитумной эмульсии с последующим ее разрушением и выделением нефтебитумной фракции [3].

Недостатками способа являются периодичность процесса, значительно снижающая производительность, нерациональннй излишний подвод энергии, приводящий к эмульгированию, что требует дополнительных затрат на отделение нефтебитумной фракции.

Целью предлагаемого изобретения является снижение энергопотребления при одновременной организации непрерывного потока очищаемого грунта или обрабатываемой битуминозной породы.

Указанная цель достигается обработкой суспензии нефтезагрязненного грунта или битуминозной породы в проточном аппарате в поле низкочастотного вибрационного воздействия.

Кроме этого, в аппарате обработки создается газожидкостная среда с кавитирующими полостями при подаче газа в аппарат.

Кроме этого, вибрация осуществляется в резонансном или околорезонасном режиме при виброускорении более 3g.

Из работ Ганиева Р.Ф. с сотрудниками [4] известно, что в определенных условиях низкочастотных вибраций образуется упругая газожидкостная система, устойчиво существующая в достаточном для управления диапазоне частот резонансных колебаний.

Резонансные и околорезонансные колебания являются рабочим режимом воздействия на суспензию нефтезагрязненного грунта или битуминозной породы и являются самыми выгодными в отношении потребления энергии. При этом в обрабатываемом объеме образуются интенсивные струйные макропотоки в направлении возбуждающей силы. Режим резонансных колебаний может изменяться с количеством газа в объеме в определенных пределах, так как при этом изменяется упругость газожидкостной смеси. Эти пределы определены объемом газа 10-25% от объема суспензии. Значительное изменение гидродинамического давления в резонансном режиме колебаний приводит к появлению кавитационных каверн вследствие понижения гидродинамического давления в отрицательном полупериоде давления паров жидкости при данной температуре.

Отделение нефтепродукта от твердых частиц осуществляется под воздействием кумулятивных микроструй при схлопывании кавитирующих полостей, в зону действия которых попадают твердые частицы грунта, а также в результате взаимодействия интенсивных встречных макропотоков при резонансном или околорезонансном режиме колебаний.

Практически полезным диапазоном частот вынужденных колебаний для возбуждения колебаний в газожидкостной системе в промышленных установках является 10-60 Гц. Этот диапазон может быть расширен в сторону увеличения, но это лишено смысла ввиду неоправданных затрат энергии.

Необходимым условием интенсивного отделения нефтепродукта от твердых частиц является соответствующая величина виброускорения, которая изменяется в пределах 3-20g.

Температура среды играет малозначащую роль и если дисперсионной средой служит вода пресная или морская, ее нижний предел может быть на 1-3o выше точки замерзания.

В предлагаемом способе могут быть использованы флотореагенты, растворители и их смеси с водой в зависимости от свойств нефтезагрязнений.

Схема осуществления способа показана на чертеже.

Подготовленная в приемной емкости 1 суспензия под небольшим избыточным давлением протекает через проточный аппарат 2, в котором создается газожидкостная среда и генерируются низкочастотные колебания в резонансном режиме.

Обработанная суспензия поступает в разделитель 3, где смесь трех фаз разделяется на твердый осадок, нефтепродукт и жидкость. Нефтепродукт отводится из верхней части разделителя, твердый осадок удаляется из нужней части известными способами, жидкость в рецикле возвращается в емкость 1.

Пример 1. Обработка нефтезагрязненного грунта производилась без применения флотореагентов при частоте 70 Гц; виброускорение - 7,5g, температура - 25oC. Начальное содержание нефтепродукта в грунте - 10,8%, после обработки - 0,9%.

Пример 2. Условия те же, частота - 42 Гц, виброускорение - 3,1g, температура - 13oC, начальное содержание нефтепродукта в грунте - 10,8%, после обработки - 1,2%.

ЛИТЕРАТУРА 1. Патент РФ N 2051165, кл. C 10 G 1/04, B 03 B 5/34, 1993.

2. А.с. СССР N 1824418, кл. C 10 G 1/04, 1991.

3. Заявка РФ N 93028183, кл. B 03 B 9/02, 1993, опубл. 10.04.96.

4. Ганиев Р.Ф. Лапчинский В.Ф. Проблемы механики в космической технологии. -М.: Машиностроение, 1978, с. 86-92.

Формула изобретения

Способ непрерывного разделения нефтесодержащего грунта, включающий подготовку суспензии, обработку суспензии пульсирующим силовым полем и разделение обработанной суспензии, отличающийся тем, что обработку суспензии производят в проточном аппарате непрерывного действия в поле низкочастотного вибрационного воздействия в резонансном или околорезонансном режиме с диапазоном частот вибрации 10 - 60 Гц и выброускорений 3 - 20 g, в газожидкостной среде, создаваемой путем подачи газа в проточный аппарат в пределах 10 - 25% объема обрабатываемой суспензии.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к устройствам по переработке нефти, в частности нефтешламов, замазутенных почв и др

Изобретение относится к извлечению органических составляющих из нефтебитуминозных пород и может быть использовано при добыче битума из месторождений и обогащению минерального сырья

Изобретение относится к способам извлечения битума из мягких кровельных покрытий, удаляемых при ремонте, и позволяет упростить и ускорить процесс извлечения битума

Изобретение относится к области нефтедобывающей промышленности, в частности к технологическим процессам переработки и утилизации нефтесодержащих осадков, накапливающихся в резервуарах различного назначения

Изобретение относится к способу экстракции битума из добытого битуминозного песка с использованием растворителя и звуковой акустической энергии в диапазоне низких частот

Изобретение относится к очистке неоднородных грунтов, ненарушенной структуры, загрязненных различными органическими и неорганическими загрязнителями (тяжелые металлы, нефтепродукты и т.п.)

Изобретение относится к области очистки мелкодисперсных материалов от углеводородных загрязнений и может быть использовано преимущественно для отмывки почвы, грунтов и шламов, загрязненных нефтепродуктами

Изобретение относится к технологии переработки минерального сырья, преимущественно сланцев, и может найти широкое применение в горной промышленности, строительстве, металлургии, химической, стекольной и других отраслях народного хозяйства

Изобретение относится к области переработки нефтешлама и может быть использовано для чистовой подготовки нефтешлама после предварительного отделения из них воды и химических соединений

Изобретение относится к области нефтяной промышленности и предназначено для разрушения твердых осадков (замазученных грунтов, донных осадков - нефтешлама) и разделения их на отдельные фракции: нефтепродукт, подлежащий дальнейшей переработке, твердый отмытый осадок и воду

Изобретение относится к технологии переработки нефтяных отходов и может быть применено в нефтедобывающей и нефтехимической промышленности для получения из отходов углеводородного сырья, а также в энергетике для получения жидких и газообразных топлив из отходов. Устройство для переработки нефтяных отходов содержит корпус шнекового транспортера, помещенный в него шнек, нагреватель, дополнительно парогенератор. Корпус шнекового транспортера в верхней части выполнен в виде прямоугольного короба, нижняя стенка которого выполнена в виде пористой пластины с пористостью 0,2-0,6, на которой установлен горизонтальный трубный пучок. В нижней части корпус выполнен в виде двух полуцилиндрических желобов, установленных параллельно и соединенных по образующей цилиндрической поверхности. Шнек выполнен в виде двух спиралей, каждая из которых установлена в полуцилиндрическом желобе. По оси каждой спирали установлена труба с пористой стенкой, которая своим входом соединена с парогенератором. Выход каждой трубы с пористой стенкой подключен к прямоугольному коробу. Нагреватель в виде трубного пучка установлен с внешней стороны на корпусе транспортера и своим входом подключен к выходу горизонтального трубного пучка. Технический результат – снижение потерь углеводородов при переработке нефтяных отходов, а также уменьшение вредных выбросов в окружающую среду. 4 ил., 2 пр.
Наверх