Способ изготовления полупроводникового модуля

 

Использование: микроэлектроника, при изготовлении различных полупроводниковых микросхем. Сущность изобретения: способ включает погружение одного или нескольких полупроводниковых кристаллов, размещенных на носителе - вакуумном захвате, в расплав эвтектического состава, нанесенный на нагретую подложку, охлаждение кристаллизующегося монолита и формирование коммутации. При этом эвтектический состав расплавляют в среде инертного газа и перегревают до температуры, превышающей эвтектическую точку на 10-30°С, а полупроводниковые кристаллы нагревают до температуры на 10-20°С ниже эвтектической точки, над расплавом эвтектического состава перед погружением полупроводниковых кристаллов создают замкнутый объем посредством установки на носителе - вакуумном захвате или подложке дополнительной рамки, толщина которой составляет 1,2-1,5 толщины полупроводникового кристалла, и производят удаление инертного газа, а охлаждение кристаллизующегося монолита осуществляют с темпом 10-30°С/мин. Техническим результатом изобретения является повышение качества изготовления полупроводникового модуля. 1 ил.

Изобретение относится к области микроэлектроники и может быть использовано при изготовлении различных полупроводниковых микросхем.

Из уровня техники известен способ изготовления полупроводниковой схемы в виде многокристального модуля, включающий погружение полупроводниковых кристаллов, размещенных на носителе - вакуумном захвате, в промежуточный слой - расплав эвтектического состава, нанесенный на нагретую подложку, охлаждение кристаллизующегося монолита (подложки и промежуточного слоя с кристаллами), отделение носителя и формирование многослойной коммутации (см. патент РФ N 2003207, кл. H 01 L 27/12, 1993 г).

Однако данная технология не во всех случаях обеспечивает высокое качество полупроводникового модуля и требует оптимизации режимных параметров.

Изобретение направлено на повышение качества изготовления полупроводникового модуля.

Решение поставленной задачи обеспечивается тем, что в способе изготовления полупроводникового модуля, включающем погружение одного или нескольких полупроводниковых кристаллов, размещенных на носителе - вакуумном захвате, в расплав эвтектического состава, нанесенный на нагретую подложку, охлаждение кристаллизующегося монолита и формирование коммутации, согласно изобретению, эвтектический состав расплавляют в среде инертного газа и перегревают до температуры, превышающей эвтектическую точку 10 - 30oC, а полупроводниковые кристаллы нагревают до температуры на 10 - 20oC ниже эвтектической точки, при этом над расплавом эвтектического состава перед погружением полупроводниковых кристаллов создают замкнутый объем посредством установки на носителе - вакуумном захвате или подложке дополнительной рамки, толщина которой составляет 1,2 - 1,5 от толщины полупроводникового кристалла, и производят удаление инертного газа, а охлаждение кристаллизующегося монолита осуществляют с темпом 10 - 30oC/мин.

Заявленная последовательность операций в сочетании с выбранными оптимальными режимными условиями их проведения, включая обезгаживание, обеспечивает высокое качество изготовленного полупроводникового модуля и прочность монолитного соединения подложки и полупроводниковых кристаллов с продуктом кристаллизации эвтектического состава, являющимся надежной конструктивной связкой.

На чертеже схематично изображен процесс погружения полупроводниковых кристаллов в расплав эвтектического состава и оснастка - аппаратурное обеспечение способа.

Аппаратурное обеспечение способа включает носитель - вакуумный захват 1, на котором размещают один или несколько полупроводниковых кристаллов 2, рамку 3, толщина которой в 1,2 - 1,5 раза превышает толщину кристалла, монтажный стол 4, оснащенный нагревателем 5 и виброприводом 6, на который устанавливают подложку 7 с каплей расплава 8 эвтектического состава (например, сплав Al-Ge с Тпл = 424oC или сплав Si-Au с Тпл = 370oC).

Способ изготовления полупроводникового модуля осуществляют следующим образом.

Включают нагреватель 5 и вибропривод 6 монтажного стола 4. Каплю расплава 8 эвтектического состава, нанесенную на керамическую подложку, которую устанавливают на монтажном столе 4, перегревают до температуры на 10 - 30oC превышающей эвтектическую точку (температуру плавления - кристаллизации эвтектики), при этом вокруг капли расплава 8 создают инертную среду путем обдува инертным газом (аргоном или азотом).

Размещают на носителе - вакуумном захвате 1 в соответствии с заданной топологией трассировки микросхемы полупроводниковые кристаллы 2 (лицевой поверхностью вверх), нагретые до температуры на 10 - 20oC ниже эвтектической точки, и рамку 3 и, осуществляя постоянную откачку газа (воздуха) из внутренней полости вакуумного захвата 1, медленно опускают последний с закрепленными на нем элементами (полупроводниковыми кристаллами 2 и рамкой 3) на перегретую каплю расплава 8. При касании рамки 3 поверхности капли расплава 8 образуется замкнутый объем 9, из которого за счет отсоса через негерметичность контактирующих поверхностей полупроводниковых кристаллов 2 и вакуумного захвата 1 удаляют инертный газ, что при дальнейшем погружении полупроводниковых кристаллов 2 в каплю расплава 8 обеспечивает качественное заполнение межкристальных зазоров. Вибрация, которую накладывают в процессе погружения полупроводниковых кристаллов 2 в капле расплава 8 для разрыва и удаления окисной пленки с поверхности расплава, также способствует качественному заполнению зазоров между полупроводниковыми кристаллами 2 и подложкой 7. При полном погружении полупроводниковых кристаллов 2 в капле расплава 8 (до упора рамки 3 в подложку 7) и плотном заполнении всех зазоров отключают нагреватель 5 и производят охлаждение кристаллизующегося модуля (полуфабриката) с темпом 10 - 30oC/мин. Затем образованный в результате кристаллизации эвтектического состава твердый монолитный модуль отделяют от носителя - вакуумного захвата 1 и формируют многослойную тонкопленочную коммутацию по планарной технологии.

Формула изобретения

Способ изготовления полупроводникового модуля, включающий погружение одного или нескольких полупроводниковых кристаллов, размещенных на носителе - вакуумном захвате, в расплав эвтектического состава, нанесенный на нагретую подложку, охлаждение кристаллизующегося монолита и формирование коммутации, отличающийся тем, что эвтектический состав расплавляют в среде инертного газа и перегревают до температуры, превышающей эвтектическую точку на 10 - 30oC, а полупроводниковые кристаллы нагревают до температуры на 10 - 20oC ниже эвтектической точки, при этом над расплавом эвтектического состава перед погружением полупроводниковых кристаллов создают замкнутый объем посредством установки на носителе - вакуумном захвате или подложке дополнительной рамки, толщина которой составляет 1,2 - 1,5 толщины полупроводникового кристалла, и производят удаление инертного газа, и охлаждение кристаллизующегося монолита осуществляют с темпом 10 - 30oC/мин.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к разработке и производству аппаратуры на основе изделий микроэлектроники и полупроводниковых приборов и может быть широко использовано в производстве многослойных печатных плат, а также коммутационных структур для многокристальных модулей

Изобретение относится к технологии изготовления накопительных конденсаторов в элементах памяти интегральных схем

Изобретение относится к производству микроэлектронной аппаратуры, в частности к изготовлению подложек для гибридных микросхем высокой степени интеграции

Изобретение относится к технологическому оборудованию для производства изделий микроэлектроники и может быть использовано на различных финишных опрерациях сборки полупроводниковых приборов и интегральных микросхем (ИМС), таких как маркировка, измерение электрических параметров, контроль внешнего вида, упаковка и других, на которых применяют многократную перегрузку изделий, размещенных в гнездах плоских многорядных кассет

Изобретение относится к электронике и может быть использовано в технологии изготовления интегральных схем запоминающих устройств (ИС ЗУ), содержащих кристаллы прямоугольной формы

Изобретение относится к контрольно-сортировочной технике в приборостроении, может быть использовано, в частности, для сортировки полупроводниковых приборов по электрическим параметрам и позволяет повысить надежность работы

Изобретение относится к способам оценки адсорбционной активности сорбентов в процессе их приготовления электростатическим методом

Изобретение относится к электронной технике и может быть использовано при изготовлении электронных вакуумных и полупроводниковых интегральных схем, гибридных схем, микросборок, транспарантов и других изделий, в которых содержатся тонкие, хрупкие диэлектрические пластины с закрепленными в них металлическими вводами и которые предназначены для работы в условиях повышенных температур

Изобретение относится к микроэлектронике и может быть использовано при формировании структур методом обратной литографии

Изобретение относится к наноэлектронике и наноэлектромеханике и может быть использовано в микроэлектромеханических системах в качестве датчиков, при производстве конденсаторов и индуктивностей для средств сотовой телефонной связи, а также для оптической волоконной связи на матричных полупроводниковых лазерах

Изобретение относится к области оптоэлектроники и электротехники

Изобретение относится к области электроники и предназначено для изготовления дискретных и матричных мембранных структур на основе керамики, служащих основой различных сенсоров, акустических приборов и других твердотельных изделий электроники

Изобретение относится к блоку микроэлектродной матрицы для датчиков или нейронных протезов

Изобретение относится к технологии изготовления интегральных микросхем в части формирования интерпозера для объемной сборки нескольких чипов в единую микроэлектронную систему и процесса его изготовления. Изобретение направлено на снижение воздействия градиентов температур и связанных с ними механических напряжений, возникающих в теле интерпозера при работе интегральной микроэлектронной системы. Для этого в теле интерпозера вокруг сквозных отверстий (TSV), заполненных проводящим материалом для создания электрического соединения металлизированной электрической разводки рабочей стороны с металлизированной разводкой обратной стороны интерпозера, формируются отверстия, один из топологических размеров которых существенно меньше диаметра или минимального топологического размера TSV. Сформированные таким образом отверстия для снижения воздействия градиентов температур заполняются материалом с теплопроводностью, большей чем у кремния, для компенсации механических напряжений не заполняются либо заполняются частично с образованием пустот внутри отверстия. 2 н. и 16 з.п. ф-лы, 11 ил.
Наверх