Огнеупорная бетонная смесь

 

Изобретение относится к приготовлению монолитных футеровок и фасонных изделий для тепловых агрегатов и печей сталеплавильного производства, печей для плавки алюминия и известных металлов, тепловых агрегатов керамических, огнеупорных, цементных и других производств. Технический результат - увеличение стойкости в службе низкоцементных бетонов на основе оксида алюминия за счет повышения прочности и шлакоустойчивости. Огнеупорная бетонная смесь содержит огнеупорный заполнитель на основе оксида алюминия и в качестве связующего - комплекс тонкодисперсных материалов, включающий Al2O3 или смесь Al2O3 и SiO2 фр. 6-0,1 мкм, высокоглиноземистый кальцийалюминатный цемент, дефлокулянт, оксид магния или алюмомагнезиальную шпинель фр. < 20 мкм при следующем соотношении компонентов, мас.%: огнеупорный заполнитель фр. 7-3 мм 25-45, фр. 3-1 мм 15-35, фр. 1-0 мм 20-45, Al2O3 или смесь Al2O3 и SiO2 фр. 6-0,1 мкм 2-25, высокоглиноземистый кальцийалюминатный цемент фр. <40 мкм 2-8, MgO или алюмомагнезиальная шпинель фр. <20 мкм 5-15, дефлокулянт 0,1-1,5. 1 табл.

Изобретение относится к изготовлению монолитных футеровок и фасонных изделий для тепловых агрегатов и печей сталеплавильного производства, печей для плавки алюминия и цветных металлов, тепловых агрегатов керамических, огнеупорных, цементных и других производств.

Известен огнеупор, содержащий ультрадисперсный Al2O3 и SiO2 диспергант, алюминатный цемент (заявка 1313368 Япония, МКИ C 04 B 35/66, 1988).

Недостатком этого огнеупора является низкая прочность сырца, уменьшающаяся при хранении, высокая пористость и низкая прочность после термообработки.

Известен огнеупор, состоящий из зернистого заполнителя алюмосиликатного состава, глиноземистого цемента, ультратонкого SiO2, Cr2O3, TiO2, соединений фтора (заявка N 3-177365 Япония, МКИ C 04 B 36/66, 1991).

Недостатком этого огнеупора является присутствие экологически вредных компонентов: фтора, хрома, а также короткие сроки твердения, что ограничивает применение этого материала.

Наиболее близким к заявляемому является огнеупорный бетон, включающий огнеупорный наполнитель и в качестве связующего - глиноземистый цемент, тонкодисперсный Al2O3, SiO2, добавку MgO, дефлокулянт (патент N 267387 ГДР, МКИ C 04 B 35/66, 1987).

Недостатком этого бетона является низкая шлакоустойчивость, недостаточная высокотемпературная прочность, невысокая температура применения (~ 1450oC).

Задачей, на решение которой направлено изобретение, является увеличение стойкости в службе низкоцементных бетонов на основе оксида алюминия за счет повышения прочности и шлакоустойчивости.

Поставленная задача решается за счет того, что огнеупорная бетонная смесь содержит огнеупорный заполнитель на основе оксида алюминия и в качестве связующего - комплекс тонкодисперсных материалов, включающий Al2O3 или смесь Al2O3 и SiO2 фр. 6-0,1 мкм, высокоглиноземистый кальцийалюминатный цемент, дефлокулянт, оксид магния или алюмомагнезиальную шпинель фр. <20 мкм при следующем соотношении компонентов, мас.%: огнеупорный наполнитель фр. 7-3 мм - 25-45 фр. 3-1 мм - 15-35 фр. 1-0 мм - 20-45 Al2O3 или смесь Al2O3 и SiO2 фр. 6-0,1 мкм - 2-25 высокоглиноземистый кальцийалюминатный цемент фр. <40 мкм - 2-8 MgO или алюмомагнезиальная шпинель фр. <20 мкм - 5-15 дефлокулянт - 0,1-1,5 Огнеупорный наполнитель может быть представлен такими материалами как корунд спеченный или электроплавленный, боксит, шамот и т.п. При этом возможны сочетания этих материалов по фракциям.

Ассортимент и соотношение тонкодисперсных компонентов установлены опытным путем и продиктованы требованиями, предъявляемыми к тиксотропным низкоцементным бетонам.

Количество высокоглиноземистого цемента должно обеспечивать низкотемпературную прочность при возможно минимальном содержании оксида кальция в бетонной смеси, для чего часть цемента заменяется ультрадисперсными фракциями огнеупорного материала, при этом для улучшения реологии бетонной смеси при низком содержании воды затворения (5-6%) необходимо присутствие дефлокулянта, в качестве которого могут использоваться сложные соединения, такие как соли фосфорной кислоты, соли поликарбоновой кислоты, лигносульфонаты, карбомилметилцеллюлоза и др.

Использование в комплексном связующем Al2O3 или смеси Al2O3 и SiO2 диктуется характером огнеупорного заполнителя: при использовании корунда предпочтительно применение тонкодисперсного Al2O3, при использовании других заполнителей - смеси Al2O3 и SiO2. Соотношение в смеси Al2O3 и SiO2 не нормировано.

Использование оксида магния или алюмомагнезиальной шпинели обусловлено только доступностью сырья в данный момент на данном предприятии.

Составы бетонных смесей приведены в таблице.

Примеры реализации.

Приготовление состава N 1.

Корунд фр. 7-3 мм в кол-ве 350 г, фр. 3-1 мм в кол-ве 250 г, фр. 1-10 мм в количестве 210 г смешивают с 80 г реактивного глинозема фр. 0,1-6 мм, 50 г высокоглиноземистого цемента, содержащего не менее 70% Al2O3, 55 г порошка окиси магния фр. <20 мкм и 5 г полифосфата интенсивно смешивают не менее 4 минут, добавляют 55 г воды и продолжают интенсивное смешивание еще 4 минуты. Затем смесь при вибрации заливают в формы и виброуплотняют. Извлеченные из формы образцы термообрабатывают при температуре 800-850oC.

В остальных примерах приготовление смеси осуществляется аналогично.

Приготовление смеси прототипа.

Изготавливали смеси согласно составу и способу, указанному в патенте.

В таблице приведены свойства образцы из опытных смесей и образцов из смеси прототипа после термообработки и твердения.

На образцах определяли предел прочности при сжатии (ГОСТ 4071-80), открытую пористость и кажущуюся плотность (ГОСТ 2409-80) после термообработки при 800-850oC и после твердения в течение 5 часов.

Шлакоустойчивости определяли статическим методом. В тигли, изготовленные из разработанных составов, засыпали по 50 г шлака следующего химического состава, мас.%: SiO2 - 16,14, TiO2 - 0,43, Al2O3 - 13,79, Fe2O3 - 5,28, CaO - 48,56, MgO - 0,77, MnO - 2,16, P2O5 - 0,57, FeO - 11,20, крупностью 0,2 мм. Тигли со шлаком нагревали со скоростью 250oC/час до 1500oC и выдерживали при этой температуре 2 часа. После охлаждения тигли распиливали через центр углубления и линейкой измеряли зону взаимодействия шлака с материалом тигля.

Как видно из таблицы, изделия, полученные из предлагаемых смесей превосходят по прочности и шлакоустойчивости образцы прототипа.

Формула изобретения

Огнеупорная бетонная смесь для изготовления низкоцементного огнеупорного бетона, содержащая огнеупорный заполнитель на основе оксида алюминия и связующее, представляющее собой комплекс тонкодисперсных материалов, отличающаяся тем, что в качестве комплексного связующего используют Al2O3 или смесь Al2O3 и SiO2, высокоглиноземистый кальцийалюминатный цемент, оксид магния или алюмомагнезиальную шпинель и дефлокулянт при следующем соотношении компонентов, мас.%:
Огнеупорный заполнитель фр. 7 - 3 мм - 25 - 45
Фр. 3 - 1 - 15 - 35
Фр. 1 - 10 мм - 20 - 45
Al2O3 или смесь Al2O3 и SiO2 фр. 6 - 0,1 мкм - 2 - 25
Высокоглиноземистый кальцийалюминатный цемент фр. < 40 мкм - 2 - 8
MgO для алюмомагнезиальная шпинель фр. < 20 мкм - 5 - 15
Дефлокулянт - 0,1 - 1,5

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3

MM4A Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины заподдержание патента в силе

Дата прекращения действия патента: 19.01.2010

Дата публикации: 20.01.2011




 

Похожие патенты:

Изобретение относится к области производства огнеупорной смеси, которая может быть использована в качестве кладочного раствора и для обмазки при производстве футеровочных и ремонтных работ тепловых агрегатов
Изобретение относится к производству огнеупорных материалов и может быть использовано в цветной металлургии при изготовлении изделий, для литейного и электролитического производства алюминия и его сплавов

Изобретение относится к порошкообразной смеси химических веществ, предназначенной для получения огнеупорной композиции, включающей наполнитель из огнеупорных частиц, металлические частицы и частицы, содержащие пероксид металла, отличается тем, что содержащие пероксид металла частицы имеют содержание пероксида кальция самое большее 75 мас.%, пероксида магния самое большее 30 мас

Изобретение относится к торкрет-массе для горячего ремонта огнеупорной кладки камерных печей, которая является жаропрочным материалом и защитным покрытием на их основе и может быть использована при ремонте камерных печей

Изобретение относится к черной металлургии и может быть использовано в доменных печах для футеровки желобов, ковшей и других футеровок конструктивных элементов и оборудования литейных дворов

Изобретение относится к металлургии

Изобретение относится к огнеупорной промышленности, а именно к составам огнеупорных масс, применяющихся для набивки тиглей индукционных печей при выплавке чугуна и стали

Изобретение относится к огнеупорной промышленности и может быть использовано при изготовлении футеровки нагреваемых печей, преимущественно муфельных, а также плавильных тиглей и фасонных огнеупорных изделий
Изобретение относится к огнеупорной промышленности и касается кремнеземистых масс для изготовления монолитных футеровок тепловых агрегатов, например сталеразливочных ковшей

Изобретение относится к способу изготовления кристаллической кремнистой огнеупорной массы, содержащей кристобалит, и может быть использовано для изготовления огнеупорных строительных кирпичей или блоков, применяемых при ремонте или возведении печей или при местном ремонте изношенной поверхности кремнистого огнеупорного материала, например, в промышленных печах, таких как стекловаренные печи

Изобретение относится к огнеупорным материалам, используемым в алюминиевой промышленности для футеровки катодной части алюминиевого электролизера

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления высокотемпературной (до 1000°С) теплоизоляции в виде плит промышленного оборудования, в частности для футеровки катодной части электролизеров для производства алюминия

Изобретение относится к способам производства огнеупорных материалов по бетонной технологии и может быть использовано для футеровки вагонеток обжига кирпича и других тепловых агрегатов с рабочей температурой до 1300°С, а также для изготовления горелочных камней и т.д
Изобретение относится к технологии изготовления углеродсодержащих огнеупоров на основе тугоплавких оксидов или карбида кремния и может быть использовано в огнеупорной и металлургической промышленности

Изобретение относится к технике производства керамических изделий, применяемых в качестве огнеприпаса в печах или в качестве облицовочных камней при замене натуральных мрамора или гранита

Изобретение относится к огнеупорной промышленности, а именно к составам уплотнительного материала, который может быть использован для выполнения плотных металло- и шлакоустойчивых швов футеровок металлоплавильных и металлоразливочных устройств

Изобретение относится к огнеупорной промышленности и может быть использовано при изготовлении шамотных (муллитокремнеземистых) огнеупоров различного назначения, в частности для футеровки элементов доменных печей, сталеразливочных ковшей и др

Изобретение относится к огнеупорной промышленности, в частности к области производства углеродсодержащих огнеупоров для футеровки различных металлургических агрегатов, например конвертеров, электросталеплавильных печей, сталеразливочных ковшей
Наверх