Способ переработки природного газа

 

Изобретение относится к области переработки природного газа под давлением методом парокислородной или паровоздушной конверсии углеводородов и может быть использовано на предприятиях химической и нефтехимической промышленности, производящих метанол, высшие спирты, водород и аммиак. Сущность способа переработки природного газа, включающего предварительную паровую каталитическую конверсию углеводородного сырья в адиабатическом реакторе, разложение полученной газовой смеси на стадии паровой конверсии в трубчатом конверторе и последующее доразложение на стадии кислородной конверсии в шахтном реакторе в том, что для поддержания заданного температурного режима удельную поверхность теплообмена в трубчатом конверторе определяют по формуле. При этом температуру газовой смеси, получаемую после кислородной конверсии на выходе из межтрубного пространства, поддерживают в диапазоне 600-670°С, а температуру исходной пароуглеводородной смеси на входе в адиабатический реактор в диапазоне 580-650°С. Изобретение позволяет увеличить срок службы реакционных труб в 3-4 раза. 1 з.п. ф-лы, 1 ил.

Предлагаемое изобретение относится к области парокислородной или паровоздушной конверсии углеводородов, в частности переработки природного газа под давлением, и может быть использовано на предприятиях химической и нефтехимической промышленности, производящих метанол, высшие спирты, водород и аммиак.

Известен способ получения водородсодержащего газа путем двухступенчатой каталитической конверсии углеводородного сырья, включающий предварительную паровую конверсию сырья в адиабатическом реакторе за счет физического тепла паросырьевой смеси, разложение полученной смеси на первой ступени конверсии за счет косвенного теплообмена в присутствии водяного пара и последующее разложение полученных продуктов на второй ступени в присутствии кислородсодержащего газа, при этом предварительную конверсию углеводородного сырья осуществляют при температуре на входе в адиабатический реактор, равной 540 - 570oC, с объемной скоростью 1000 - 1200 час-1 и температурой газа на выходе из трубчатого конвертора после косвенного теплообмена 500 - 600oC (Патент SU C 01 B 3/38 N 1770266A1).

К недостаткам способа следует отнести низкие рабочие температуры металла реакционных труб на участках, близких к выходу греющего потока из трубчатого конвертора (500 - 550oC), что приводит из-за восстановительного характера греющего газа к разрушению реакционных труб за счет взаимодействия оксида углерода с водородом по реакции: CO + H2 = H2O + C.

Наличие в поверхностном слое металла свободного углерода приводит к значительным поверхностным напряжениям и к разрушению металла с образованием мелких частиц, т.е. происходит образование металлической пыли.

Кроме того, вследствие ограничения в температуре нагрева исходной парогазовой смеси перед адиабатическим реактором, значительно снижаются температуры исходной парогазовой смеси на входе в трубчатый конвертор и конвертированного газа после шахтного конвертора на выходе из межтрубного пространства трубчатого конвертора.

Технический результат изобретения состоит в увеличении срока службы реакционных труб.

Указанный результат достигается способом переработки природного газа с получением водородсодержащего газа, включающим предварительную паровую каталитическую конверсию углеводородного сырья в адиабатическом реакторе, разложение полученной газовой смеси на стадии паровой конверсии в трубчатом конверторе и последующее доразложение на стадии кислородной конверсии в шахтном реакторе, причем газовую смесь, получаемую после кислородной конверсии, предварительно подают в межтрубное пространство трубчатого конвертора, при этом удельную поверхность теплообмена в трубчатом конверторе определяют из следующей зависимости: где П.Г. - природный газ; A - константа = (0.05 - 0.3), безразмерная; C0 - константа = [(-1)-(-5.5)]106, ккал/1000 нм3П.Г.; B0 - константа = (1.3-2.0)106, ккал/1000 нм3П.Г.; m - константа = -2.2, безразмерная; C1 - константа = (200 - 350), oK; B1 - константа = (220 - 330), ккал/м2часoK; A1 - константа = (275 - 550), ккал/м2часoK;
n - константа = 0.75, безразмерная;
T1 - температура входа смеси в реакционные трубы, oK;
T2 - температура конвертированного газа на выходе из межтрубного пространства, oK;
1 - параметрическая температура процесса, (T2+T1)/2T0, безразмерная;
2 - параметрическая температура конвертора, (T2/T0), безразмерная;
Кроме того, температуру газовой смеси, получаемой после кислородной конверсии на выходе из межтрубного пространства, поддерживают в диапазоне 600 - 670oC, а температуру исходной пароуглеводородной смеси на входе в адиабатический реактор в диапазоне 580 - 650oC.

На чертеже представлена схема осуществления способа получения водородсодержащего газа.

Очищенное от сернистых соединений газообразное углеводородное сырье под давлением до 10 МПа смешивают с водородной фракцией и водяным паром, нагревают в теплообменнике 1 до 580 - 650oC за счет тепла потока конвертированного газа после шахтного конвертора 4 и направляют в адиабатический конвертор 2, загруженный никелевым катализатором на основе окиси алюминия, где за счет физического тепла парогазовой смеси происходит процесс паровой конверсии метана с образованием водорода и с одновременным охлаждением реакционной смеси до 515 - 540oC на выходе из конвертора.

После адиабатического конвертора реакционная смесь поступает в реакционные трубы трубчатого конвертора 3, загруженные никелевым катализатором, где происходит паровая конверсия метана за счет тепла потока конвертированного газа после шахтного конвертора 4 в процессе косвенного теплообмена. При этом температура металла реакционных труб не ниже 560 - 620oC, температура конвертированного газа после реакционных труб 640 - 750oC, а содержание остаточного метана в конвертированном газе 32 - 20%. Конвертированный газ после трубчатого конвертора 3 поступает в шахтный конвертор 4, где реагирует с потоком кислорода. При этом происходит нагрев реакционной смеси до 1450 - 1550oC, с этой температурой реакционная смесь поступает на слой никелевого катализатора, загруженного в шахтный конвертор 4, где и происходит конверсия остаточного после первичной паровой конверсии метана за счет физического тепла горячей реакционной смеси. Температура конвертированного газа на выходе из слоя катализатора шахтного конвертора составляет 1000 - 1075oC, а содержание остаточного метана в сухом конвертированном газе составляет 0.5 - 0.7%.

Горячий конвертированный газ после шахтного конвертора 4 поступает в межтрубное пространство трубчатого конвертора 3, где он охлаждается в процессе косвенного теплообмена, отдавая тепло на проведение паровой конверсии смеси, протекающей через реакционные трубы. Удельная поверхность теплообмена в трубчатом конверторе определена следующим образом:

и меняется от 12 до 50 м2час/ 1000 нм3П.Г. Температура потока конвертированного газа после шахтного конвертора на выходе из межтрубного пространства реакционных труб 600 - 670oC. С этой температурой поток конвертированного газа используется для нагрева реакционной смеси после адиабатического парового реформинга до температуры 580 - 650oC в трубчатом теплообменнике 1 до подачи его в адиабатический конвертор 2.

После охлаждения в трубчатом теплообменнике 1 до 430 - 550oC утилизируют тепло потока конвертированного газа и далее используют водородсодержащий газ либо в схеме производства метанола, либо аммиака и водорода.

Пример 1.

Газовая смесь состава, % об.: CH4-94.084, CO2-1.150, CO-0.011, H2-3.751, N2-0.948, Ar-0.056, с температурой 401.4oC, при соотношении пар : газ, равном 2.397, поступает в теплообменник 1, где нагревается до температуры 580oC за счет тепла потока конвертированного газа после межтрубного пространства трубчатого конвертора 3 и поступает в адиабатический реактор паровой конверсии 2, где за счет физического тепла газовой смеси на никелевом катализаторе происходит процесс паровой конверсии с образованием водорода и окислов углерода с одновременным снижением температуры реакционной смеси на выходе из конвертора до 508.5oC. Газовая смесь после конвертора 2 при соотношении пар : газ=1.84, в пересчете на сухой газ, имеющей следующий состав, % об.: CH4-71.125, CO2-5.637, CO-0.148, H2-22.281, N2-0.765, Ar-0.045, подается в трубчатый конвертор 3, где на никелевом катализаторе за счет тепла конвертированного газа после конвертора второй ступени, передаваемого в процессе косвенного теплообмена, происходит процесс паровой конверсии с образованием газовой смеси, имеющей следующий состав в пересчете на сухой газ, CH4-35.212, CO2-9.407, CO-4.423, H2-50.442, N2-0.488, Ar-0.028. Соотношение в газовой смеси между водяным паром и сухой газовой смесью равно 1.01, а температура газовой смеси на выходе из реакционных труб равна 743oC. Температура металла реакционных труб не ниже 597oC. Удельная поверхность теплообмена в трубчатом конверторе, определенная по формуле:

составляет 21.7 м2час/ 1000 нм3 П.Г. После реакционных труб горячий конвертированный газ подают в шахтный реактор второй ступени 4, сюда же подают технический кислород в соотношении кислород : природный газ, равном 0.458. Температура конвертированного газа после шахтного конвертора 1003.5oC, соотношение пар : газ на выходе - 0.631, а состав конвертированного газа в пересчете на сухой газ, %об.: CH4-0.5, CO2-9.621, CO-19.249, H2-70.282, N2-0.292, Ar-0.056. После шахтного конвертора второй ступени 4 горячий конвертированный газ поступает в межтрубное пространство трубчатого конвертора 3, где в результате косвенного теплообмена с реакционными трубами происходит его охлаждение до 600oC. С этой температурой конвертированный газ подают в теплообменник 1 для нагрева газовой смеси до температуры 580oC.

Пример 2.

Газовая смесь под давлением 36 атм состава, %об.: CH4-94.085, CO2-1.153, CO-0.007, H2-3.751, N2-0.948, Ar-0.056, с температурой 401.2oC, при соотношении пар : газ, равном 3.296, поступает в теплообменник 1, где нагревается до температуры 650oC за счет тепла потока конвертированного газа после межтрубного пространства трубчатого конвертора 3 и поступает в адиабатический реактор паровой конверсии 2, где за счет физического тепла газовой смеси на никелевом катализаторе происходит процесс паровой конверсии с образованием водорода и окислов углерода с одновременным снижением температуры реакционной смеси на выходе из конвертора до 541.1oC. Газовая смесь после конвертора 2 при соотношении пар : газ=2.118, в пересчете на сухой газ, имеющей следующий состав, %об.: CH4-57.000, CO2-8.297, CO-0.358, H2-33.653, N2-0.653, Ar-0.039, подается в трубчатый конвертор 3, где на никелевом катализаторе за счет тепла конвертированного газа после конвертора второй ступени происходит процесс паровой конверсии с образованием газовой смеси, имеющей следующий состав в пересчете на сухой газ, CH4-32.509, CO2-10.589, CO-3.622, H2-52.787, N2-0.465, Ar-0.028. Соотношение в газовой смеси между водяным паром и сухой газовой смесью равно 1.38, а температура газовой смеси на выходе из реакционных труб равна 727.8oC. Температура металла реакционных труб не ниже 636oC. Удельная поверхность теплообмена в трубчатом конверторе, определенная по формуле:

составляет 14.8 м2час /1000 нм3 П.Г. После реакционных труб горячий конвертированный газ подают в шахтный реактор второй ступени 4, сюда же подают технический кислород в соотношении кислород : природный газ, равном 0.453. Температура конвертированного газа после шахтного конвертора 973.4oC, соотношение пар : газ на выходе - 0.861, а состав конвертированного газа в пересчете на сухой газ, %об.: CH4-0.5, CO2-11.835, CO-16.318, H2-71.007, N2-0.285, Ar-0.055. После шахтного конвертора второй ступени 4 горячий конвертированный газ поступает в межтрубное пространство трубчатого конвертора 3, где в результате косвенного теплообмена с реакционными трубами происходит его охлаждение до 670oC. С этой температурой конвертированный газ подают в теплообменник 1 для нагрева газовой смеси до температуры 650oC.

Предлагаемый способ обеспечивает на всей длине реакционных труб и чехлов вокруг них отсутствие участков с температурой металла ниже, чем 575oC. Выше этой температуры константа равновесия реакции образования свободного углерода очень мала, что теоретически исключает возможность протекания процесса. Таким образом, увеличивается срок службы реакционных труб в 3 - 4 раза.


Формула изобретения

1. Способ переработки природного газа, включающий предварительную паровую каталитическую конверсию углеводородного сырья в адиабатическом реакторе, разложение полученной газовой смеси на стадии паровой конверсии в трубчатом конверторе и последующее доразложение на стадии кислородной конверсии в шахтном реакторе, причем газовую смесь, получаемую после кислородной конверсии, предварительно подают в межтрубное пространство трубчатого конвертора, отличающийся тем, что удельную поверхность теплообмена в трубчатом конверторе определяют из следующей зависимости:

где П.Г. - природный газ;
А - константа = (0,05 - 0,3), безразмерная;
С0 - константа = [(-1) - (-5,5)] 106, ккал/1000 нм3 П.Г.;
В0 - константа = (1,3 - 2,0) 106, ккал/1000 нм3 П.Г.;
m - константа = -2,2, безразмерная;
С1 - константа = (200 - 350), oК;
В1 - константа = (220 - 330), ккал/м2.ч.oК;
А1 - константа = (275 - 550), ккал/м2.ч.oК;
n - константа = 0,75, безразмерная;
Т1 - температура входа смеси в реакционные трубы, oК;
Т2 - температура конвертированного газа на выходе из межтрубного пространства, oК;
1 - параметрическая температура процесса, (Т2 + Т1)/2 Т0, безразмерная;
2 - параметрическая температура конвертора, (Т20), безразмерная.

2. Способ по п.1, отличающийся тем, что температуру газовой смеси, получаемую после кислородной конверсии на выходе из межтрубного пространства, поддерживают в диапазоне 600 - 670oС, а температуру исходной пароуглеводородной смеси на входе в адиабатический реактор в диапазоне 580 - 650oС.

РИСУНКИ

Рисунок 1

NF4A Восстановление действия патента СССР или патента Российской Федерации на изобретение

Дата, с которой действие патента восстановлено: 27.01.2009

Извещение опубликовано: 27.01.2009        БИ: 03/2009



 

Похожие патенты:

Изобретение относится к области электроэнергетики

Изобретение относится к химической промышленности, в частности к установке для производства сажи, водорода и алмазов

Изобретение относится к способу получения монооксида углерода и водорода путем частичного окисления углеводородного сырья, в частности углеводородного сырья, содержащего диоксид углерода
Изобретение относится к области химической технологии и может быть использовано на химических и нефтехимических предприятиях, производящих синтетические спирты, в частности метанол

Изобретение относится к способу каталитического частичного окисления углеводородов, в частности к способу получения смеси моноокиси углерода и водорода
Изобретение относится к области производства газов, богатых водородом и/или моноокисью углерода, путем парового риформинга углеводородов, более конкретно к никелевому катализатору на носителе для получения газа, богатого водородом и/или моноокисью углерода, и способу для получения указанного газа

Изобретение относится к области производства тепловыделяющих элементов и получения водорода, конкретно - металлическим составам, взаимодействующим с водой с выделением тепла и водорода

Изобретение относится к теплообменному оборудованию, а именно к выпарным аппаратам, используемым для выпаривания воды из промышленных растворов в целлюлозной, глиноземной и химических отраслях производства

Изобретение относится к способу и устройству для уменьшения содержания окислов азота в отработавшем газе двигателя внутреннего сгорания, при котором отработавший газ, а также распыленный в нем посредством сжатого воздуха реактив подводят к катализатору

Изобретение относится к области охраны окружающей среды, и может быть использовано для очистки промышленных газовых выбросов
Изобретение относится к очистке продуктов горения и может использоваться для очистки дымовых газов в теплоэнергетической, химической, металлургической и других отраслях промышленности применительно к оборудованию, снабженному электрофильтрами
Изобретение относится к очистке продуктов горения и может использоваться для очистки дымовых газов в теплоэнергетической, химической, металлургической и других отраслях промышленности применительно к оборудованию, снабженному электрофильтрами
Изобретение относится к очистке продуктов горения и может использоваться для очистки дымовых газов в теплоэнергетической, химической, металлургической и других отраслях промышленности применительно к оборудованию, снабженному электрофильтрами

Изобретение относится к установке и способу мокрого типа для обессеривания топочных газов, и в частности, к установке мокрого типа для обессеривания топочных газов и к способу использования твердого обессеривающего вещества для экономичного удаления окислов серы в топочных газах, выходящих из аппаратуры горения, такой как котлы, с высоким качеством обессеривания, меньшим истиранием насоса для циркуляции поглощающей жидкости и сопла для ее распыления, меньшим ухудшением качества обессеривания из-за алюминиевых и фторовых составляющих в поглощающей жидкости, сниженной мощностью для измельчения твердых обессеривающих веществ, таких как известняк, и прекрасной управляемостью по изменениям количества отработанного газа или концентрации в нем SO2

Изобретение относится к устройствам для осушки газов
Наверх