Способ получения термостойких хромовых покрытий

 

Изобретение относится к гальванотехнике и может быть использовано для упрочнения рабочей поверхности инструмента, оснастки, деталей машин и механизмов. Способ включает электрохимическое осаждение покрытий из насыщенного раствора кремнефторида калия в водном растворе хромового ангидрида и серной кислоты, при этом концентрация серной кислоты составляет 1/125-1/25 мас.ч. по отношению к хромовому ангидриду. Износостойкость покрытий, полученных по предлагаемому способу, возрастает в 2-3 раза по сравнению с обычными хромовыми покрытиями, температура термообработки, при которой начинает снижаться микротвердость покрытий, повышается с 450-500 до 650-700°С. 2 ил.

Изобретение относится к гальванотехнике, а более точно к получению хромовых покрытий из электролитов, содержащих в своем составе частично растворимые в водных растворах хромового ангидрида соли, например: кремнефторид калия, кремнефторид натрия, фторалюминат натрия и др. Область применения термостойких хромовых покрытий совпадает с областью применения обычных хромовых покрытий: покрытия могут быть рекомендованы для упрочнения рабочей поверхности инструмента, оснастки, деталей машин и механизмов, в особенности в тех случаях, когда изделия, подвергнутые упрочнению, эксплуатируются в условиях повышенных температур. Например: прессовый инструмент для порошковой металлургии, детали поршневой группы двигателей внутреннего сгорания и т. п.

Известен способ получения композиционных покрытий [1] , в котором в электролит хромирования, содержащий кремнефторид калия, вводятся ультрадисперсные алмазы (УДА-В), что приводит к повышению износостойкости покрытий за счет изменения их структуры [2]. Применение УДА-В значительно увеличивает стоимость покрытий и усложняет технологию эксплуатации электролита.

Известны способы получения хромовых покрытий из саморегулирующихся электролитов [3] , содержащих в своем составе частично растворимые соли. Однако износостойкость и термостойкость покрытий, получаемых из таких электролитов, примерно соответствует характеристикам покрытий из обычных промышленных ванн.

Известен способ получения покрытий из так называемого саморегулирующегося бариевого электролита [4]. В этом электролите недостаток концентрации анионов кислот, вводимых в виде кремнефторида калия, компенсируется за счет ввода в электролит серной кислоты. Электролит содержит сульфат бария. Из-за низкой растворимости данный компонент практически не влияет на концентрацию анионов. По сравнению со стандартным электролитом саморегулирующийся бариевый электролит обеспечивает осаждение зеркальных осадков, а в отличие от саморегулирующихся электролитов имеет более широкий диапазон рабочих плотностей тока. Однако износостойкость и термостойкость покрытий из саморегулирующегося бариевого электролита примерно соответствуют характеристикам покрытий из обычных промышленных ванн.

В предлагаемом решении с целью повышения термостойкости и износостойкости покрытий концентрация серной кислоты в саморегулирующемся бариевом электролите повышается с 1/1000 - 1/500 мас. ч. по отношению к хромовому ангидриду [4] до 1/125 - 1/25 мас. ч. по отношению CrO3.

При исследовании возможностей улучшения характеристик покрытий из различных электролитов, предназначенных для осаждения хромовых покрытий, было обнаружено неожиданно сильное влияние концентрации серной кислоты на термостойкость и износостойкость покрытий, получаемых из электролитов, представляющих насыщенный раствор кремнефторида калия в водном растворе хромового ангидрида.

На фиг. 1 показана зависимость относительного износа покрытий от массовой доли серной кислоты для электролитов, содержащих различное количество хромового ангидрида.

Покрытия осаждались при плотности тока 40 А/дм2 и температуре электролитов 50-55oC из насыщенного раствора кремнефторида калия. Объемный износ покрытий определялся в соответствии с [5] при сухом трении образца покрытия со скоростью 0,76 м/с по контртелу из стали Х12М. Как следует из приведенных данных, в диапазоне концентрации серной кислоты 1/125 до 1/25 мас. ч. по отношению к хромовому ангидриду наблюдается резкое повышение износостойкости покрытий (относительный износ, равный 1, на фиг. 1 соответствует усредненному уровню характеристик покрытий из саморегулирующегося бариевого электролита). О повышении термостойкости предлагаемых покрытий можно судить по результатам измерения их микротвердости после термообработки в течение 2 ч при различных температурах в сравнении с покрытиями из саморегулирующегося бариевого электролита (см. фиг. 2). Образцы покрытий получены из электролита, содержащего 250 г/л хромового ангидрида при концентрации серной кислоты 5 г/л, температура электролита 50-55oC, плотность тока 40 А/дм2. Микротвердость покрытий определена на микротвердомере ПМТ-З при нагрузке 100 г и толщине покрытий не менее 50 мкм. Покрытия, полученные из электролита в соответствии с предлагаемым решением, имеют относительно высокий уровень твердости 600 кг/мм2 до температур 650-700oC в отличие от обычных покрытий, микротвердость которых значительно уменьшается уже после температур термообработки 450-500oC.

Для получения покрытий в соответствии с описываемым способом рекомендуется электролит с концентрацией хромового ангидрида, соответствующей стандартному электролиту. Используя известные методы [3] приготавливают электролит состава, г/л: Хромовый ангидрид - 200-250 Калий кремнефтористый - до 20 Серная кислота - 2-10 Рабочую температуру электролита поддерживают в диапазоне 50 - 55oC и особое внимание обращают на растворение кремнефторида калия до образования насыщенного раствора. Для этого приготовленный электролит выдерживают при рабочей температуре и непрерывном перемешивании не менее 4-5 ч. Проработку электролита производят в соответствии с известными [3] рекомендациями из расчета 5-6 А ч/л. Покрытия осаждают при плотности тока от 10 до 60 А/дм2. Характеристики покрытий соответствуют представленным на фиг. 1, 2.

Описанный способ применен при разработке технологической документации процесса нанесения термостойких хромовых покрытий. Данный процесс внедрен на ПО "Сибприбормаш" г. Бийск и используется для упрочнения рабочих поверхностей металлорежущего и прессового инструмента.

Литература 1. Способ получения покрытий на основе хрома. Международная заявка PCT/SU/88/00230, номер международной публикации WO 89/07668 от 24.04.89.

2. Верещагин А. Л. , Золотухина И.И. и др. Влияние алмазоподобной фазы углерода на микроструктуру электроосажденного хромового покрытия. Сверхтвердые материалы, 1991, N1, с. 46-49.

3. М. Б. Черкез, Л.Я. Богорад. Хромирование. Ленинград: Машиностроение, 1978, с. 13-16, с. 58-63.

4. С. А. Лобанов. Практические советы гальванику. Ленинград: Машиностроение, 1983, с. 227- 233.

5. Halling J. A cross cylinder wear machine and its use in the study of severe wear of brass on mild steel. Wear, 4, 1961, pp.22-31.

Формула изобретения

Способ получения термостойких хромовых покрытий, включающий электрохимическое осаждение покрытий из насыщенного раствора кремнефторида калия в водном растворе хромового ангидрида и серной кислоты, отличающийся тем, что концентрация серной кислоты составляет 1/125-1/25 мас.ч. по отношению к хромовому ангидриду.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:
Изобретение относится к получению электрохимическим методом углеродсодержащих хромовых покрытий, твердость которых возрастает после термообработки

Изобретение относится к области гальваностегии, в частности к электролитическому хромированию, и может быть использовано в машиностроении, приборостроении и других областях техники

Изобретение относится к области получения металлических покрытий электролитическим способом, в частности к электролитическому хромированию, и может быть использовано в машиностроении, приборостроении и других областях техники

Изобретение относится к гальваностегии, в частности к электролитическому осаждению хромовых покрытий на медные и стальные изделия

Изобретение относится к гальванотехнике и может быть использовано в машиностроении, приборостроении и других областях техники

Изобретение относится к области электроосаждения металлических покрытий и может быть использовано в гальванотехнике при нанесении хромовых покрытий всех типов из хромовокислых электролитов
Изобретение относится к области электрохимической обработки изделий типа тел вращения в электролите

Изобретение относится к области нанесения покрытий электролитическими способами и может быть использовано для получения гальванических фрактальных покрытий различной конфигурации

Изобретение относится к области гальванотехники
Изобретение относится к области гальванотехники, в частности к проточному электролитическому хромированию, и может быть использовано в машиностроении и других областях техники. Способ включает нанесение хромового покрытия при температуре хромсодержащего электролита 60-65°C с принудительной подачей электролита в пространство между поверхностями обрабатываемого изделия и анодом, установленным коаксиально изделия, при этом нанесение покрытия осуществляют при возвратно-поступательном перемещении анода и вращении обрабатываемого изделия со скоростью протока электролита 120-200 см/сек при плотности тока 60-80 А/дм2, причем электролит содержит 80-130 г/л хромового ангидрида и 4-6 г/л серной кислоты. Изобретение направлено на повышение срока службы изделий, в частности цилиндров глубинных штанговых насосов, за счет снижения пористости и увеличения микротвердости покрытия. 2 табл., 4 пр.
Изобретение относится к области гальванотехники, в частности к электролитическому хромированию деталей из жаропрочных сталей. Способ включает обезжиривание, активацию в растворе соляной кислоты, хромирование в электролите с концентрацией хромового ангидрида 250 г/л и серной кислоты 2,5 г/л, промывку после каждой операции, при этом активацию проводят в растворе концентрированной соляной кислоты при температуре 15-35°С в течение 5-10 с, а хромирование при плотности тока 50-60 А/дм2 и температуре 50-55°С. Технический результат: повышение сцепления хромового покрытия с жаропрочной сталью и коррозионной стойкости деталей. 1 пр.

Изобретение относится к поршневому кольцу, способу его изготовления и двигателю внутреннего сгорания, содержащему упомянутое поршневое кольцо. Поршневое кольцо содержит основную часть из хромистой стали с более чем 10% по массе хрома, имеющую внутреннюю периферийную поверхность, первую боковую поверхность, вторую боковую поверхность и внешнюю периферийную поверхность. На первой боковой поверхности оно содержит азотированный диффузионный слой толщиной 5-300 мкм, расположенный непосредственно над ним азотированный соединительный слой толщиной 0,5-15 мкм и расположенный непосредственно над ним оксидный слой толщиной 0,05-3 мкм. На второй боковой поверхности оно содержит азотированный диффузионный слой. На внешней периферийной поверхности оно содержит азотированный диффузионный слой и расположенный над ним слой из хрома и твердых частиц, в котором объемное содержание твердых частиц составляет 0,1-30% относительно общего объема указанного слоя. Способ изготовления указанного поршневого кольца, в котором металлическую основную часть поршневого кольца, имеющую внутреннюю периферийную поверхность, первую боковую поверхность, вторую боковую поверхность и внешнюю периферийную поверхность, подвергают комбинированному процессу азотирования-окисления в атмосфере, содержащей по меньшей мере одно азотное соединение, с нагревом по меньшей мере до 300°С. Затем подают воздух и охлаждают поршневое кольцо в присутствии воздуха. В результате чего по меньшей мере на первой боковой поверхности, второй боковой поверхности и внешней периферийной поверхности получают азотированный диффузионный слой, расположенный над ним азотированный соединительный слой и расположенный над ним оксидный слой. Поршневое кольцо помещают в водный электролит, содержащий хром в ионной форме и твердые частицы, и по меньшей мере на внешнюю периферийную поверхность электрохимически осаждают слой из хрома и указанных твердых частиц. Обеспечивается получение поршневого кольца с высокоизносостойкой внешней периферийной поверхностью и боковой поверхностью, которая одновременно имеет высокую твердость и высокую коррозионную устойчивость. 3 н. и 12 з.п. ф-лы, 3 ил.
Наверх