Тепловая электростанция

 

Изобретение относится к теплоэнергетике. Электростанция состоит из котла 1, вентилятора 2, пароперегревателя 3 с встроенным транспортером 4, вентилятора 5, турбины 6, конденсатора 7, сосуда Дьюара для рабочего тела 8, насоса 9, теплообменника 10, компрессора 11, сосуда Дьюара для хладагента 12 с испарителем 13, компрессора 14 и насоса 15. Котел 1 заполняется криогенной жидкостью, например жидким азотом, с помощью насоса 9. Вентилятор 2 продувает котел 1 атмосферным воздухом. Азот в котле нагревается, испаряется и поступает в пароперегреватель 3, который продувается атмосферным воздухом вентилятором 5. Достигнув заданных параметров давления и температуры в пароперегревателе, рабочее тело поступает на турбину 6, где производит работу и охлаждается. После турбины рабочее тело поступает в конденсатор 7, где конденсируется, и стекает в сосуд Дьюара 8, из которого насосом 9 подается в котел 1. Хладагент в конденсаторе нагревается и поступает в испаритель 13. Отбор тепла от хладагента осуществляется компрессором 14, который создает вакуум в испарителе, хладагент кипит при понижающейся температуре, а пар (воздух) выбрасывает в окружающую среду. Температура хладагента при этом понижается до заданной, а охлажденный хладагент стекает в сосуд Дьюара 12 и насосом 15 подается в конденсатор. Пополнение потерь хладагента осуществляется с помощью компрессора 11, который отбирает холодный воздух из газохода после вентилятора 2 и подает его в теплообменник 10, куда с противотоком поступает переохлажденный жидкий азот (рабочее тело) из сосуда Дьюара 8. В результате теплообмена воздух сжижается, охлаждается до заданной температуры и поступает в испаритель 13 для дальнейшего охлаждения. Изобретение позволяет повысить КПД цикла. 2 з. п. ф-лы, 1 ил.

Изобретение относится к области теплоэнергетики, в частности к технологии выработки электроэнергии по традиционной схеме котел-турбина-генератор энергии и может быть широко использовано в народном хозяйстве для выработки электроэнергии без образования вредных отходов.

Общеизвестны способы получения электроэнергии на тепловых электростанциях, где в качестве рабочего тела на турбине используют водяной пар. Перед подачей пара на турбину его надо нагревать, используя уголь, природный газ или нефтепродукты природного происхождения.

Известны также способы выработки электроэнергии на гидроэлектростанциях, ветровых энергетических установках, приливных электростанциях, солнечных теплоэлектрогенераторах, атомных электростанциях и др. Тепловые, атомные и гидроэлектростанции приносят человечеству много вреда. Тепловые выбрасывают много вредных газов и пыли. Гидроэлектростанции нарушают водный режим рек, подтопляют леса, пагубно влияют на флору и фауну. Атомные приносят радиоактивные отходы, захоронение которых представляет неразрешимую проблему. Электростанции морских приливов и ветровые считают экологически чистыми, однако они маломощны и не смогут решить проблему энергетики.

Ближайшим аналогом заявляемого изобретения (прототипом) является тепловая электростанция по патенту RU 2129213, кл. F 01 K 25/10, 1998 г., содержащая трубчатый цилиндрический котел, турбину с генератором и систему нагрева (охлаждения) рабочего тела, включающую вентилятор, теплообменник, конденсатор, два сосуда Дьюара, два компрессора, два насоса, испаритель с трубопроводами и запорно-регулирующей арматурой.

Недостатком этой электростанции является низкий коэффициент полезного действия, который в лучшем случае будет около 25%.

Задача изобретения состоит в том, чтобы значительно повысить коэффициент полезного действия теплового цикла.

Новый технический результат достигается тем, что в тепловой электростанции, содержащей трубчатый цилиндрический котел, турбину с генератором и систему нагрева (охлаждения) рабочего тела, включающую вентилятор, теплообменник, конденсатор, два сосуда Дьюара, два компрессора, два насоса с трубопроводами, выполненными в виде сосудов Дьюара и запорно-регулирующей арматурой в качестве энергоносителя применен атмосферный воздух, в качестве хладагента и рабочего тела криогенная жидкость и после котла установлен пароперегреватель, выполненный, к примеру, в виде противоточного кожухотрубного теплообменника, снабженного вентилятором.

Кроме того технический результат достигается тем, что внизу кожуха пароперегревателя выполнено окно, выходящее в пристроенный короб прямоугольного сечения, внутри которого установлен транспортер для удаления льда в отвал.

Далее новый технический результат достигается еще и тем, что в пароперегревателе установлены антиобледенители, например, в виде ультразвукового генератора.

Изобретение иллюстрируется схемой, где показан пример заявляемой электростанции.

Предлагаемая тепловая электростанция состоит из горизонтального цилиндрического трубчатого котла 1, вентилятора 2, пароперегревателя 3 с встроенным транспортером 4, вентилятора 5, активной турбины с генератором 6, конденсатора 7, сосуда Дьюара для жидкого рабочего тела 8, питательного насоса 9, теплообменника 10, компрессора 11, сосуда Дьюара для хладагента 12, с испарителем 13, компрессора 14 и циркуляционного насоса 15.

Пароперегреватель 3 выполнен, к примеру, в виде противоточного теплообменника, в нижней части кожуха которого выполнено окно, выходящее в пристроенный продольный короб прямоугольного сечения, внутри которого установлен транспортер 4 для удаления льда в отвал. На пароперегревателе 3 смонтирована ультразвуковая установка (на схеме не показана) для удаления льда с конструкций пароперегревателя.

Предлагаемая тепловая электростанция работает следующим образом.

Сосуд Дьюара 12 заполняется криогенной жидкостью при температуре -212oC, которая будет использоваться в качестве хладагента.

С помощью питательного насоса 9 котел 1 заполняется жидким рабочим телом, после чего включается в работу вентилятор 2. Вентилятор 2 продувает внутреннее пространство котла. Криогенная жидкость в котле нагревается и испаряется. Газообразное рабочее тело с очень низкой температурой поступает в пароперегреватель 3. Включается в работу вентилятор 5. Вентилятор 5 продувает внутреннее пространство пароперегревателя атмосферным воздухом, который подается в пароперегреватель с противотоком рабочему телу. Температура атмосферного воздуха (энергоносителя) в зависимости от времени года и районов планеты Земля колеблется от -80oC или 193 K (Антарктида) до +50oC или 323 K (Африка, Сахара).

Температура рабочего тела после пароперегревателя будет чуть ниже указанных значений и будет в пределах 190 K - 320 K.

При достижении давления в котле, и пароперегревателе, к примеру, 300 кгс/см2 и заданной температуры, которую можно регулировать, газообразное рабочее тело подается на турбину 6, где производит работу и охлаждается. После турбины 6 рабочее тело поступает в конденсатор 7, куда с противотоком с помощью циркуляционного насоса 15 подается хладагент с температурой -212oC (61 K). В конденсаторе рабочее тело полностью конденсируется, охлаждается до - 198oC и стекает в сосуд Дьюара 8, а с помощью питательного насоса 9 снова подается в котел. Хладагент нагревается до температуры -197oC и поступает в испаритель 13 сосуда Дьюара 12.

Испаритель 13 имеет значительную длину, которая необходима для того, чтобы увеличить время пребывания хладагента в испарителе. Хладагент течет по испарителю не полным сечением, т.е. имеет поверхность испарения. Охлаждение хладагента производится с помощью компрессора 14, который создает вакуум в испарителе. Хладагент интенсивно кипит за счет внутренней энергии. Пар отбирается компрессором 14 и удаляется в окружающую среду, а хладагент охлаждается до заданной температуры и стекает в сосуд Дьюара 12. Из сосуда Дьюара 12 с помощью циркуляционного насоса 15 хладагент подается в конденсатор 7.

Количество хладагента постоянно уменьшается за счет того, что компрессор 14 выбрасывает его в окружающую среду в газообразном состоянии. Пополнение потерь хладагента происходит с помощью компрессора 11, который отбирает холодный воздух с температурой -190oC, выходящий из котла после вентилятора 2 и после разделения его на установке разделения воздуха направляет его в теплообменник 10, куда с противотоком подается рабочее тело с температурой -198oC.

В процессе работы на конструкциях пароперегревателя образуется лед, который сбрасывается с помощью ультразвука. Лед попадает на транспортер 4 и удаляется в отвал.

Главным преимуществом предлагаемой тепловой электростанции является то, что она экологически чиста и коэффициент полезного действия по сравнению с прототипом увеличен почти в 3 раза.

Формула изобретения

1. Тепловая электростанция, содержащая трубчатый цилиндрический котел, турбину с генератором и систему нагрева (охлаждения) рабочего тела, включающую теплообменник, вентилятор, конденсатор, два сосуда Дьюара, два компрессора, два насоса с трубопроводами и запорно-регулирующей арматурой, в качестве энергоносителя в которой применен атмосферный воздух, отличающаяся тем, что в качестве рабочего тела и хладагента применена криогенная жидкость и после котла установлен пароперегреватель, снабженный вентилятором.

2. Тепловая электростанция по п.1, отличающаяся тем, что внизу кожуха пароперегревателя выполнено окно, выходящее в пристроенный короб прямоугольного сечения, внутри которого установлен транспортер для удаления льда в отвал.

3. Тепловая электростанция по пп.1 и 2, отличающаяся тем, что в пароперегревателе установлены антиобледенители, например, в виде ультразвукового генератора.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к области создания энергетического устройства по превращению теплоты атмосферного воздуха в механическую энергию привода электрических генераторов и любых механических устройств

Изобретение относится к области теплоэнергетики, в частности к технологии выработки электроэнергии по традиционной схеме "котел-турбина-генератор энергии" и, может быть широко использовано в народном хозяйстве для выработки электроэнергии без образования вредных отходов

Изобретение относится к комплексным энергетическим установкам для получения различных видов энергии и твердого диоксида углерода (ДУ)

Изобретение относится к холодильной технике, а точнее к комбинированным установкам для получения тепла, холода и твердого диоксида углерода (ДУ)

Изобретение относится к области создания энергетического устройства по превращению бросовой теплоты различных теплоносителей (газ, жидкость) в механическую энергию привода электрических генераторов для выработки электроэнергии или привода любых механических устройств

Изобретение относится к холодильной технике, а более конкретно к области комплексных энергетических установок, позволяющих получать одновременно теплоту, холод и электроэнергию

Изобретение относится к области теплоэнергетики, в частности к технологии выработки электроэнергии по схеме котел - турбина - генератор энергии, и может быть широко использовано для производства электроэнергии без образования вредных отходов

Изобретение относится к теплоэнергетике

Изобретение относится к энергетике

Изобретение относится к области производства электроэнергии, кислорода, инертных газов, холода, пресной воды; накопления, хранения и регенерации энергии

Изобретение относится к способу и системе для производства энергии из геотермального теплового источника

Изобретение относится к многофункциональным энергетическим установкам, в которых в качестве рабочего вещества используют сжатый газ или жидкость под высоким давлением

Тепловая машина предназначена для преобразования энергии тепловых отходов на тепловых электростанциях в механическую энергию с целью вторичной выработки электроэнергии. Тепловая машина содержит основание, цилиндры с поршнями, вал отбора мощности, низкотемпературный источник тепловой энергии и холодильник. В рабочие полости цилиндров залита легкоиспаряющаяся жидкость. Цилиндры прикреплены к паре звеньев ряда замкнутых эквидистантных цепей и образуют трассы из четырех или более таких рядов, сдвинутых относительно друг друга на одну четверть шага ряда цилиндров. На штоках поршней имеются зацепы. На крышке каждого цилиндра на шарнире укреплен рычаг с упором от пружины конца рычага в шток поршня и роликом на другом его конце напротив копира, установленного на основании в каждом ряду трассы цилиндров, с возможностью одностороннего закрепления рычагом и открепления копиром штока поршня, на конце которого имеется коромысло. Напротив концов коромысла на основании установлены шарнирно два крючкообразных анкера с возможностью закрепления концов коромысла крючками анкеров. Каждая пара цепей, на которых прикреплены цилиндры, входит в зацепление с приводными звездочками общего вала отбора мощности и холостыми звездочками трассы, имеющей две ниспадающие петли из рядов цилиндров, одна из которых погружена в источник тепловой энергии, например в емкость с горячей водой, а другая - в холодильник, например в емкость с холодной водой. Предлагаемая машина имеет ряд положительных особенностей преобразования энергии тепловых отходов, рассеянных в большой массе низкотемпературного теплоносителя, в механическую энергию, которые позволяют эффективно использовать эту энергию для выработки электроэнергии. Позволит сократить потребность в теплоносителях, а также сократить потребление электроэнергии от внешних поставщиков на предприятиях, где образуется большая масса низкотемпературных отходов. 5 ил.
Наверх