Способ разложения минерального и техногенного сырья

 

Изобретение относится к технологии минерального и техногенного сырья, которое используется для получения соединений титана, ниобия, тантала и редкоземельных элементов. Сущность изобретения заключается в том, что исходное сырье обрабатывают в герметичных условиях соляной кислотой с концентрацией 35,5-40% при Т:Ж=1:3,4-20,0 и температуре 75-100°С. В качестве исходного сырья используют лопарит, ильменит, сфен, перовскит, титаномагнетит и ниобат лития. Обработку осуществляют при начальном давлении 0,2-0,5 МПа. Кроме того, процесс ведут в режиме противотока. Способ позволяет снизить энергоемкость процесса за счет снижения температуры обработки при обеспечении высокой степени извлечения в раствор ценных компонентов, а также упростить аппаратурное оформление процесса. 3 з.п. ф-лы.

Настоящее изобретение относится к технологии минерального и техногенного сырья, которое используется для получения соединений титана, ниобия, тантала и редкоземельных элементов.

Известен способ разложения минерального и техногенного сырья, в частности перовскитового концентрата (см. патент Германии N 285083, МПК C 01 G 23/04, 1990), путем обработки 20-30%-ной соляной кислотой или 40-48%-ной азотной кислотой при 160-200oC в течение 1,0-2,5 часов в автоклаве.

Известен способ разложения минерального и техногенного сырья, в частности ильменитового концентрата (см. Белякова Е.П., Двернякова А.А.Разложение ильменитового концентрата соляной кислотой //Укр.хим.ж. 1963, 29, N 6, 633-636), путем обработки 20%-ной соляной кислотой при температуре 220oC в автоклаве.

Недостатками указанных способов являются высокая температура разложения, повышенная энергоемкость и сложность аппаратурного оформления.

Известен способ разложения минерального и техногенного сырья, в частности метаниобата лития (см. Кулифеев В.К., Мякишева Л.В. Разработка комплексной технологии утилизации ниобия и лития из отходов и брака производства монокристаллов ниобата лития // 2-ой международный симпозиум - Проблемы комплексного использования руд, 19-24 мая 1996 г., С.-Петербург, с.337), путем спекания с незначительным избытком карбоната лития при температуре 700-725oC с получением ортониобата лития, который разлагают соляной кислотой.

Недостатком способа является необходимость высокотемпературного спекания метаниобата лития с избытком карбоната лития, что приводит к дополнительным энергетическим расходам, делает процесс многооперационным и требует подбора материала, стойкого к соединениям лития, агрессивным при высоких температурах.

Известен также способ разложения минерального и техногенного сырья, в частности лопаритового концентрата (см. Мурач Н.Н., Поведская Л.Г., Кулифеев В. К. Сборник научных трудов. Ин-т цвети. мет. им. М.И.Калинина. 1963, N 35, 171-174), путем обработки 35%-ной соляной кислотой в автоклаве при Т:Ж = 1: 4,75 и температуре 110-120oC в течение 4 часов. Перед обработкой концентрат измельчают до крупности 740 мкм. Для более активного воздействия кислоты в автоклав загружают фарфоровые шары. Извлечение ценных компонентов концентрата в раствор составляет 95-97%. Выход твердого остатка не превышает 8-10%.

Недостатками способа являются повышенная температура процесса, недостаточно полная степень извлечения ценных компонентов, реализация процесса в автоклаве, что усложняет его аппаратурное оформление.

Настоящее изобретение направлено на решение задачи снижения энергоемкости процесса и упрощения его аппаратурного оформления при обеспечении высокой степени извлечения в раствор ценных компонентов.

Поставленная задача решается тем, что в способе разложения минерального и техногенного сырья, содержащего металл, выбранный из группы, включающей ниобий, тантал, титан, путем обработки исходного сырья в герметичных условиях концентрированной соляной кислотой при нагревании и перемешивании, обработку сырья ведут соляной кислотой с концентрацией 35,5-40% при температуре 75-100oC.

На решение поставленной задачи направлено также то, что в качестве исходного сырья используют лопарит, ильменит, сфен, перовскит, титаномагнетит и ниобат лития.

Решение поставленной задачи достигается и тем, что обработку осуществляют при начальном давлении 0,2 - 0,5 МПа.

Поставленная задача решается также тем, что процесс ведут в режиме противотока.

Повышение концентрации кислоты более 35,5% позволяет снизить температуру разложения без ущерба для степени извлечения ценных компонентов и продолжительности процесса. Верхний предел концентрации 40% определяется растворимостью соляной кислоты. При понижении концентрации менее 35,5% увеличиваются материальные потоки и снижается степень извлечения ценных компонентов в раствор.

Проведение обработки в герметичных условиях обеспечивает использование кислоты без потерь на взаимодействие с сырьем.

Повышение температуры более 100oC усложняет аппаратурное оформление процесса. Снижение температуры менее 100oC упрощает выбор конструкционных материалов и способа нагрева, а также снижает энергозатраты, однако при понижении температуры менее 75oC уменьшается степень извлечения в раствор.

В выбранном температурном интервале начальное давление не превышает 0,5 МПа. Нижний предел давления 0,2 МПа определяется содержанием остаточной соляной кислоты и температурой процесса.

Ведение процесса в режиме противотока позволяет в заявленном интервале концентраций и температур достичь 99%-ного извлечения всех ценных компонентов и их максимальной концентрации в продукционном растворе.

Сущность и преимущества предлагаемого способа могут быть пояснены следующими Примерами.

Пример 1. 5 г лопаритового концентрата с крупностью частиц 50 мкм, имеющего состав, мас.%: TiO2 46,30; сумма РЗЭ 26,19; SrO 2,20; Nb2O5 6,16; Ta2O5 0,47; CaO 5,40; K2O 1,80; SiO2 2,10; Fe2O3 0,6; ThO2 0,63; нерастворимые в соляной кислоте минералы (эгирин, полевой шпат) 4,80, обрабатывают в герметичных условиях 37%-ной соляной кислотой при Т:Ж=1:5 и температуре 100oC в течение 6 часов. Отделяют фильтрацией нерастворимый остаток. Вес остатка 0,39 г. Степень извлечения для растворимых в соляной кислоте компонентов составляет 96,8%. Фильтрат содержит, г/л: TiO2 85,40; сумма РЗЭ 48,30; Nb2O5 11,40; Ta2O5 0,80.

Пример 2. Обрабатывают лопаритовый концентрат по Примеру 1, но при 90oC и давлении в начале процесса 0,5 МПа. Вес остатка 0,33 г. Степень извлечения 98,1%. Фильтрат содержит, г/л: TiO2 86,50; сумма РЗЭ 48,90; Nb2O5 11,50; Ta2O5 0,90.

Пример 3. Обрабатывают лопаритовый концентрат по Примеру 1, но при 75oC. Вес остатка 0,77 г. Степень извлечения 88,9%. Фильтрат содержит, г/л: TiO2 78,30; сумма РЗЭ 44,30; Nb2O5 10,40; Ta2O5 0,80.

Пример 4. Обрабатывают лопаритовый концентрат по Примеру 1, но при Т:Ж= 1: 4 и температуре 90oC. Вес остатка 0,42 г. Степень извлечения 96,3%. Фильтрат содержит, г/л: TiO2 106,00; сумма РЗЭ 59,90; Nb2O5 14,10; Ta2O5 1,10.

Пример 5. Обрабатывают лопаритовый концентрат по Примеру 1, но при 90oC в течение 4 часов. Вес остатка 0,45 г. Степень извлечения 95,7%. Фильтрат содержит, г/л: TiO2 84,30; сумма РЗЭ 47,70; Nb2O5 11,20; Ta2O5 0,85.

В Примере 6 осуществляют кислотную обработку суммы нерастворимых остатков, образовавшихся при осуществлении способа по Примерам 1-5, т.е. используют режим противотока, дополнительно повышая степень извлечения.

Пример 6. 2,36 г нерастворимых остатков, полученных по Примерам 1-5, обрабатывают 37%-ной соляной кислотой при Т:Ж=1:7, температуре 75oC в течение 4 часов. Давление в начале процесса 0,2 МПа. Вес нерастворимого остатка 0,68 г. Кристаллооптическим анализом в остатке найдены только зерна эгирина. Степень извлечения 71%. В результате повторной обработки соляной кислотой в режиме противотока достигается практически полное извлечение ценных компонентов в раствор.

Пример 7. 5 г перовскитового концентрата с крупностью частиц 100 мкм, имеющего состав, мас.%: TiO2 53,0; сумма РЗЭ 2,0; (Nb,Ta)2O5 0,8; CaO 36,0; SiO2 4,2; Fe2O3 2,0; FeO 0,9; нерастворимые в соляной кислоте минералы (метасиликаты, оливин) 12,0, обрабатывают в герметичных условиях 39%-ной соляной кислотой при Т:Ж=1:5 и температуре 100oC в течение 7,5 часов. Отделяют фильтрацией нерастворимый остаток. Вес остатка 0,64 г. Степень извлечения для растворимых в соляной кислоте компонентов составляет 99,0%. Фильтрат содержит, г/л: TiO2 92,0; (Nb,Ta)2O5 1,4; CaO 62,7.

Пример 8. Обрабатывают перовскитовый концентрат по примеру 7, но 38%-ной соляной кислотой при Т: Ж=1:3,4 и температуре 95oC в течение 8 часов. Вес остатка 0,88 г. Степень извлечения 94,0%. Фильтрат содержит, г/л: TiO2 87,3; (Nb,Ta)2O5 1,3; CaO 59,3.

Пример 9. Обрабатывают перовскитовый концентрат по примеру 7, но 40%-ной соляной кислотой при Т:Ж=1:5 и температуре 90oC в течение 6 часов. Вес остатка 0,69 г. Степень извлечения 98,3%. Фильтрат содержит, г/л: TiO2 91,3; (Nb,Ta)2O5 1,38; CaO 62,0.

Пример 10. Обрабатывают перовскитовый концентрат по примеру 9, но при Т: Ж=1:4. Вес остатка 0,80 г. Степень извлечения 95,5%. Фильтрат содержит, г/л: TiO2 88,7; (Nb,Ta)2O5 1,34; CaO 60,2.

Пример 11. 5 г сфенового концентрата с крупностью частиц 250 мкм, имеющего состав, мас. %: TiO2 33,1; сумма РЗЭ 0,5; CaO 24,9; SiO2 30,0; Fe2O3 1,6-3,6; нерастворимые в соляной кислоте компоненты 30,0, обрабатывают в герметичных условиях 38%-ной соляной кислотой при Т:Ж=1:5 и температуре 95oC в течение 4 часов. Отделяют фильтрацией нерастворимый остаток. Вес остатка 1,55 г. Степень извлечения для растворимых в соляной кислоте компонентов составляет 98,4%. Фильтрат содержит, г/л: TiO2 45,7; CaO 34,3.

Пример 12. Обрабатывают сфеновый концентрат по примеру 11, но при температуре 75oC в течение 6 часов. Вес остатка 2,00 г. Степень извлечения 85,7%. Фильтрат содержит, г/л: TiO2 39,7; CaO 29,9.

Пример 13. 5 г ильменитового концентрата с крупностью частиц 70 мкм, имеющего состав, мас.%: TiO2 46,0; Fe2O3 5,0; FeO 35,0; SiO2 6,0; MgO 2,0; нерастворимые в соляной кислоте компоненты 6,0, обрабатывают в герметичных условиях 38%-ной соляной кислотой при Т:Ж=1:5 и температуре 95oC в течение 5 часов. Отделяют фильтрацией нерастворимый остаток. Вес остатка 0,29 г. Степень извлечения для растворимых в соляной кислоте компонентов составляет 99,0%. Фильтрат содержит, г/л: TiO2 86,6; Fe2O3 9,4; FeO 65,9.

Пример 14. Обрабатывают ильменитовый концентрат по примеру 13, но 35,5%-ной соляной кислотой. Вес остатка 0,54 г. Степень извлечения 94,9%. Фильтрат содержит, г/л: TiO2 82,0; Fe2O3 8,8; FeO 62,5.

Пример 15. 5 г титаномагнетитового концентрата с крупностью частиц 200 мкм, имеющего состав, мас.%: TiO2 15,5; Fe 56,5; SiO2 2,3; нерастворимые в соляной кислоте компоненты 8,0, обрабатывают в герметичных условиях 38%-ной соляной кислотой при Т:Ж=1:5 и температуре 95oC в течение 7,5 часов. Отделяют фильтрацией нерастворимый остаток. Вес остатка 0,42 г. Степень извлечения для растворимых в соляной кислоте компонентов составляет 99,5%. Фильтрат содержит, г/л: TiO2 28,4; Fe 95,0.

Пример 16. 5 г отходов ниобата лития с крупностью частиц 50 мкм, полученных при нарезании пластин из монокристаллов, обрабатывают в герметичных условиях 37%-ной соляной кислотой при Т:Ж=1:20 и температуре 95oC в течение 7 часов. Отделяют фильтрацией нерастворимый остаток. Вес остатка 0,175 г. Степень извлечения 96,5%. Фильтрат содержит, г/л: Nb2O5 43,0; Li2O 4,9.

Пример 17. Обрабатывают отходы ниобата лития по Примеру 16, но при Т:Ж= 1: 15 в течение 8 часов. Вес остатка 0,28 г. Степень извлечения 94,5%. Фильтрат содержит, г/л: Nb2O5 56,5; Li2O 6,4.

Таким образом, из приведенных Примеров следует, что предлагаемое изобретение позволяет снизить энергоемкость процесса за счет снижения температуры обработки при обеспечении высокой степени извлечения в раствор ценных компонентов, а также упростить аппаратурное оформление процесса.

Формула изобретения

1. Способ разложения минерального и техногенного сырья, содержащего металл, выбранный из группы, включающей ниобий, тантал, титан, путем обработки исходного сырья в герметичных условиях концентрированной соляной кислотой при нагревании и перемешивании, отличающийся тем, что обработку сырья ведут соляной кислотой с концентрацией 35,5 - 40% при Т : Ж = 1 : 3,4 - 20,0 и температуре 75 - 100oC.

2. Способ по п.1, отличающийся тем, что в качестве исходного сырья используют лопарит, ильменит, сфен, перовскит, титаномагнетит и ниобат лития.

3. Способ по п.1 или 2, отличающийся тем, что обработку осуществляют при давлении 0,2 - 0,5 МПа.

4. Способ по любому из пп.1 - 3, отличающийся тем, что процесс ведут в режиме противотока.



 

Похожие патенты:

Изобретение относится к гидрометаллургической переработке рудных концентратов, а более конкретно к переработке лопаритового концентрата

Изобретение относится к способу получения тантала и ниобия из их химических соединений, включающему восстановление щелочным металлом и последующее выщелачивание остатка щелочного металла из порошков тантала и ниобия, полученных в элементарном состоянии

Изобретение относится к гидрометаллургической переработке рудных концентратов, а более конкретно к переработке лопаритового концентрата

Изобретение относится к способу получения сплавов, в частности к способу плавки с расходуемым электродом, отличающемуся улучшенными характеристиками плавки и равномерным распределением минимальных количеств испаренного сплавляемого металла по всему деформируемому металлическому продукту

Изобретение относится к способу получения чистого ниобия, включающему восстановительную плавку пятиокиси ниобия с алюминием и кальцием и последующий многократный электронно-лучевой рафинировочный переплав

Изобретение относится к металлургии, в частности к способу получения ниобия и сплавов на его основе, алюмотермическим восстановлением при высокой температуре в присутствии добавок

Изобретение относится к металлургии и может быть использовано при производстве материала высокой чистоты для атомной энергетики, электротехники, химического машиностроения, в частности к способу рафинирования ниобия путем многократного электронно-лучевого переплава в кристаллизатор с вытягиванием слитка и электромагнитным перемешиванием расплава

Изобретение относится к способу переработки танталовых концентратов, включающему сульфатизацию исходного сырья, выщелачивание сульфатно-фторидным раствором, экстракцию трибутилфосфатом, реэкстракцию фторидом аммония, нейтрализацию с получением осадка химконцентрата, промывку осадка проводят последовательно раствором аммонийсодержащего соединения горячей водой и этиловым спиртом и последующую сушку при температуре 300 - 500oС

Изобретение относится к способу получения тантала и ниобия из их соединений, включающему восстановление щелочным металлом и последующее выщелачивание остатка щелочного металла из полученного металла

Изобретение относится к гидрометаллургии, в частности к технологии жидкостной экстракции ниобия и тантала

Изобретение относится к цветной металлургии, в частности к устройствам для очистки губчатого титана вакуумной сепарацией

Изобретение относится к гидрометаллургической переработке рудных концентратов, а более конкретно к переработке лопаритового концентрата
Изобретение относится к цветной металлургии, в частности к способам получения губчатого титана магниетермическим восстановлением
Изобретение относится к металлургии титана и может быть использовано при переработке титансодержащего сырья хлорным методом
Изобретение относится к получению высоко чистого диоксида титана, используемого в качестве пигмента в составах эмалей, красок, в составах жаропрочных стекол, керамики, пьезоматериалов и в других отраслях промышленности
Изобретение относится к цветной металлургии, в частности к получению титана магниетермическим восстановлением

Изобретение относится к изготовлению полуфабрикатов из отходов титана и его сплавов

Изобретение относится к металлургии тугоплавких соединений, а именно к способу получения карбида титана, включающему восстановление смеси тетрахлоридов титана и углерода

Изобретение относится к способу для упрощения удаления примесей, особенно (но не только) таких радиоактивных изотопов, как например уран и торий и их дочерних радиоизотопов, из титансодержащих материалов, причем в частности изобретение касается способов удаления урана и тория из выветренного или "измененного" ильменита и продуктов, образованных из ильменита

Изобретение относится к цветной металлургии, в частности к ретортам для магниетермического получения губчатого титана
Изобретение относится к металлургии благородных металлов, в частности к электрохимическим способам переработки сплавов металлов платиновой группы (МПГ), преимущественно бинарных, таких, как платина-родий, платина-иридий
Наверх