Устройство для дистанционного измерения температуры

 

Изобретение предназначено для дистанционного измерения температуры различных объектов в диапазоне от -60 до +60°С. Может применяться в различных областях науки и техники, где использование традиционных измерителей температуры встречает затруднения. Устройство для дистанционного измерения температуры содержит генератор, передающую и приемную антенны, постоянные магниты для создания подмагничивающего поля и частотомер. Генератор является СВЧ-генератором. Он содержит полый резонатор и диод Ганна. Внутри полого резонатора закреплен гиромагнитный резонатор из монокристалла FeBO3. Такое выполнение устройства позволяет увеличить расстояние бесконтактной передачи сигнала, упростить конструкцию и повысить надежность измерений. 2 ил.

Устройство предназначено для дистанционного измерения температуры различных объектов в диапазоне от -60oC до +60oC. Прибор может применяться в различных областях науки техники, где использование традиционных измерителей температуры встречает определенные затруднения, например при измерении температуры атмосферы с использованием метеорологических зондов.

Известно устройство дистанционного измерения температуры [1], принцип работы которого заключается в возбуждении колебаний в измерительной схеме, выполненной в виде генератора и включающей в себя термочувствительный пьезорезонатор. Пьезорезонатор и задает частоту генератора. Температуру определяют по частоте электромагнитных колебаний, излучаемых измерительной схемой. Недостатком способа является наличие электронной измерительной схемы - генератора с излучающей антенной, что значительно усложняет измерительный блок прибора, увеличивает его габариты. Изменение температуры влияет и на параметры элементов измерительной схемы, что сказывается на диапазоне измеряемых температур и приводит к снижению точности измерений.

Известно устройство для измерения температуры, содержащее термозависимый пьезорезонатор в качестве датчика температуры, включенный в частотно-задающую цепь измерительного преобразователя, радиоприемник с регистратором, генератор накачки для возбуждения измерительного преобразователя. Измерительный преобразователь выполнен в виде двухконтурного параметрического генератора с некратными частотами. Это устройство выбрано в качестве прототипа [2] .

Недостатками этого устройства являются незначительные расстояния, на которых можно проводить дистанционное измерение температуры и наличие возбуждающего генератора, расположенного отдельно от измерительной схемы, что значительно усложняет схему прибора.

Технический результат изобретения заключается в увеличении расстояния, на которое возможна бесконтактная передача сигнала от измерительного преобразователя температуры к регистрирующему устройству, в упрощении конструкции прибора и повышении надежности измерений.

Указанный технический результат достигается тем, что в устройстве для дистанционного измерения температуры, содержащем генератор, передающую и приемную антенны новым является то, что генератор является СВЧ-генератором, содержащим полый резонатор и диод Ганна, причем внутри полого резонатора закреплен гиромагнитный резонатор из монокристалла FeBO3, устройство также содержит постоянные магниты для создания подмагничивающего поля на гиромагнитном резонаторе и частотомер, подключенный к выходу приемной антенны.

Сопоставительный анализ с прототипом показывает, что заявляемое устройство отличается тем, что используется СВЧ-генератор, содержащий полый резонатор и диод Ганна, причем внутри полого резонатора закреплен гиромагнитный резонатор из монокристалла FeBO3, устройство также содержит постоянные магниты для создания подмагничивающего поля на гиромагнитном резонаторе и частотомер, подключенный к выходу приемной антенны. Таким образом, заявляемое устройство соответствует критерию изобретения "новизна". При изучении других известных технических решений в данной области техники признаки, отличающие заявляемое изобретение от прототипа, не были выявлены и потому они обеспечивают заявляемому техническому решению соответствие критерию "изобретательский уровень".

На фиг. 1 приведена температурная зависимость резонансной частоты для ГР из монокристалла FeBO3, величина внешнего магнитного поля H = 2 кЭ.

На фиг. 2 приведена принципиальная конструкция предлагаемого устройства для дистанционного измерения температуры.

Устройство содержит гиромагнитный резонатор из монокристалла FeBO3 2, полый резонатор 3 с короткозамыкающим поршнем 4, генераторный СВЧ-диод 5, постоянный магнит 6, передающую антенну 7, приемную антенну 8, частотомер 9.

Работает прибор следующим образом. Измерительная головка (ИГ) прибора крепится к объекту 1, температуру которого необходимо контролировать. ГР 2 из монокристалла FeBO3 крепится внутри полого резонатора СВЧ-генератора 3 на короткозамыкающем поршне 4. Короткозамыкающий поршень изготавливается из материала с высокой теплопроводностью, например из меди, поэтому температура ГР совпадает с температурой объекта 1. При фиксированной температуре T1 частота излучения СВЧ-генератора определяется типом генераторного СВЧ-диода 5, геометрическими размерами полого резонатора и величиной внешнего подмагничивающего поля на ГР, которое создается малогабаритными постоянными магнитами 6. Излучение генератора через передающую антенну 7 поступает в окружающее пространство. Приемное устройство (ПУ) представляет собой приемную антенну 8, к выходу которой подключен частотомер, фиксирующий частоту выходного сигнала СВЧ-генератора f1, а следовательно, и температуру T1. Изменение температуры объекта 1 до T2 приведет к изменению частоты генератора, частотомер зафиксирует новое значение f2, соответствующее температуре T2.

Зависимость частоты СВЧ-генератора f от температуры T является однозначной. Для практических целей удобнее и проще построить градуировочную экспериментальную кривую зависимости частоты генератора от температуры f(T). Современная элементная база позволяет без труда прокалибровать частотомер так, чтобы его показания показывали температуру измеряемого объекта в градусах.

Использование известного СВЧ-генератора в устройстве для дистанционного измерения температуры в диапазоне от -60oC до +60oC обеспечивает его малогабаритность, технологическую простоту и надежность. Устройство позволяет контролировать изменение температуры на значительных расстояниях, включая верхние слои атмосферы и ближний космос.

Приведем некоторые конструктивные параметры предлагаемого устройства. При разумных габаритах частота СВЧ-генератора может находиться в пределах f10-40 ГГц. С одной стороны увеличение f позволит уменьшить габариты полого резонатора и излучающей антенны, но при этом возрастут габариты и масса постоянных магнитов. Исходя из расстояния, на котором будет происходить контроль температуры, и чувствительности приемной аппаратуры, выбирается мощность, которую способен генерировать диод-Ганна. Для большинства приложений можно применять микромощные диоды Ганна, для питание которых достаточно обычных батареек. Таким образом, нужно выбирать некоторый компромисс исходя из конкретных условий применения устройства. Так, в частотном диапазоне 35 ГГц реальные габариты ИГ могут быть 1х2х3 см3. При изменении температуры от -60oC до +60oC выходная частота генератора изменяется, при условии оптимальной настройки, от f137 до f235 ГГц. В этом случае на 1oC приходится изменение частоты генератора f16 МГц. Современные методы измерения частоты СВЧ-излучения позволят без труда обеспечить высокую чувствительность прибора во всем диапазоне измеряемых температур, не хуже 0,5oC.

Источники информации 1. Новицкий П.В., Кнорринг В.Г. и Гутников В.С. Цифровые приборы с частотными датчиками. Л.: Энергия, 1970, с. 118-119.

2. Авторское свидетельство СССР N 864027, МКИ G 01 K 7/32, 1981 (прототип).

Формула изобретения

Устройство для дистанционного измерения температуры, содержащее генератор, передающую и приемную антенны, отличающееся тем, что генератор является СВЧ-генератором, содержащим полый резонатор и диод Ганна, причем внутри полого резонатора закреплен гиромагнитный резонатор из монокристалла FeBO3, устройство также содержит постоянные магниты для создания подмагничивающего поля на гиромагнитном резонаторе и частотомер, подключенный к выходу приемной антенны.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к тепловым измерениям, а именно к устройствам для измерения температуры с бесконтактной (дистанционной) передачей сигнала от измерительного датчика к регистрирующему устройству

Изобретение относится к температурным измерениям и может быть использовано при построении цифровых термометров, работающих с термопреобразователями, имеющими частотный выходной сигнал, например пьезокварцевыми преобразователями

Изобретение относится к температурным измерениям, а именно к устройствам для контроля температурных воздействий на исследуемый обьект

Изобретение относится к термометрии, а именно к контактным датчикам температуры, и может использоваться в нефтяной, химической промышленности и коммунальном хозяйстве

Изобретение относится к термометрии, а именно к контактным датчикам температуры, и может использоваться при измерении температуры с минимальной глубиной погружения датчика в нефтяной, химической промышленности и коммунальном хозяйстве, в частности, в трубах малого диаметра

Изобретение относится к области измерительной техники, а именно к цифровым термометрам, работающим с термопреобразователями, представляющими измерительную информацию в импульсной форме

Изобретение относится к измерительной технике, предназначено для работы с термопреобразователями с частотным выходным сигналом и может быть использовано при измерениях температуры, например, в теплосчетчиках для повышения точности измерения температуры при одновременном упрощении устройства

Изобретение относится к электротехнике и может быть использовано при создании и применении устройств и систем для измерения температуры поверхностей, находящихся под напряжением

Изобретение относится к измерительной технике и может быть использовано в системах контроля окружающей среды и управления технологическими процессами. Согласно заявленному предложению осуществляют измерение частоты генератора, зависящей от параметров терморезисторов, располагаемых равномерно по объему исследуемого поля и соединенных с внешними конденсаторами фазирующей RC-цепочки, образующих совместно с усилителем генератор, соединенный через преобразователь частота-код и микроконтроллер, программу которого снабжают градуировочной характеристикой зависимости частоты от контролируемой температуры. Изобретение также предоставляет возможность коррекции инструментальной погрешности измерения во время тарировки после установки терморезисторов в контролируемой среде и установление значения частоты, соответствующей минимальной и максимальной средней температуры среды, при достижении которых включают дополнительный режим индикации. После обработки контроллером результат подают в канал регулирования или на индикатор температуры. Технический результат: повышение точности измерения температуры среды. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к термометрии и предназначено для работы с термопреобразователями с частотным выходным сигналом. Заявлен цифровой термометр, содержащий термопреобразователь с частотным выходом, генератор прямоугольных импульсов, реверсивный счетчик с прямыми динамическими входами, параллельный регистр с инверсным динамическим синхровходом, преобразователь код-частота (ПКЧ) и дополнительно введенное ПЗУ. Вычитающий вход реверсивного счетчика соединен с выходом ПКЧ, частотный вход которого соединен с выходом генератора прямоугольных импульсов, а суммирующий вход счетчика подключен к выходу термопреобразователя и синхровходу параллельного регистра. Выходы реверсивного счетчика подключены к входам параллельного регистра, выходы которого соединены с кодовыми входами ПКЧ и с входами ПЗУ, выходы которого являются выходами устройства. Предлагаемое изобретение обеспечивает функциональное преобразование импульсной информации за счет использования частотно-импульсной следящей системы компенсационного типа, обеспечивающей непрерывное отказоустойчивое формирование результата в соответствии с температурной характеристикой термопреобразователя. Технический результат: повышение точности измерения температуры. 1 ил.

Изобретение относится к области термометрии и может быть использовано для работы с термопреобразователями с импульсным выходным сигналом. Цифровой термометр содержит термопреобразователь с импульсным выходом, генератор прямоугольных импульсов, реверсивный счетчик с прямыми динамическими входами, параллельный регистр с инверсным динамическим синхровходом, элемент И, элемент НЕ, преобразователь код-частота (ГТКЧ) и дополнительно введенное ПЗУ. При этом вычитающий вход реверсивного счетчика соединен с выходом элемента И, первый вход которого подключен к выходу ПКЧ, частотный вход, которого соединен с выходом генератора прямоугольных импульсов, а второй вход элемента И связан с выходом элемента НЕ, соединенного с выходом термопреобразователя. Суммирующий вход реверсивного счетчика с весовым коэффициентом k подключен к выходу термопреобразователя и синхровходу параллельного регистра, выходы реверсивного счетчика подключены к входам параллельного регистра, выходы которого соединены с кодовыми входами ПКЧ и с входами ПЗУ, выходы которого являются выходами устройства. Технический результат: повышение точности измерения температуры и расширение функциональных возможностей устройства. 1 ил.
Наверх