Высокопрочная конструкционная сталь

 

Изобретение относится к металлургии, в частности к созданию высокопрочных конструкционных сталей, которые могут быть использованы для изготовления крупногабаритных высоконагруженных деталей в различных областях машиностроения, например в авиа- и космической технике. Предложенная высокопрочная конструкционная сталь содержит компоненты при следующем соотношении, мас.% : углерод 0,36 - 0,44, кремний 2,6 - 3,0, марганец 0,10 - 0,5, хром 1,0 - 1,3, никель 3,5 - 4,8, кобальт 2,0 - 4,5, молибден 0,3 - 0,9, ванадий 0,05 - 0,15, не менее одного элемента из группы щелочноземельных металлов, включающей магний и кальций, 0,001 - 0,05, и элемент из группы редкоземельных металлов, включающей лантан и церий, 0,001 - 0,05, железо - остальное. Техническим результатом изобретения является повышение прочности, текучести, сопротивления срезу при сохранении достаточной вязкости, пластичности, высокого сопротивления коррозионно-водородному растрескиванию. 5 табл.

Предлагаемое изобретение относится к области металлургии, а именно к созданию высокопрочных сталей, и может быть использовано при изготовлении крупногабаритных деталей в различных областях машиностроения, в авиакосмической технике.

Известны высокопрочные конструкционные среднелегированные стали, широко применяемые в авиационных конструкциях с прочностью 180-210 кгс/мм2; сталь ЭИ643 (Россия) [1] и сталь 300 М (США) [2], химический состав и механические свойства этих сталей приведены в табл. 1 и 2.

Указанные стали не обеспечивают получение прочности более 200 кгс/мм2 при удовлетворительном запасе пластичности и вязкости.

Известна высокопрочная конструкционная сталь 35ХС2Н3М1ФА [3], применяемая в авиационных конструкциях, следующего состава (мас. %): Углерод - 0,30 - 0,38 Марганец - 0,05 - 0,5 Кремний - 2,1 - 2,8 Хром - 0,8 - 1,2 Никель - 2,6 - 3,0 Молибден - 0,3 - 1,2 Ванадий - 0,05 - 0,15 Один элемент из группы редкоземельных металлов, включающей лантан и церий - 0,001 - 0,05 Не менее одного элемента из группы щелочноземельных металлов, включающей магний и кальций - 0,001 - 0,05
Железо - Остальное
По технической сущности и достигаемому эффекту эта сталь наиболее близка к предлагаемой и принята в качестве прототипа.

Механические свойства стали приведены в табл. 3.

Известная сталь стабильно не обеспечивает получение предела прочности свыше 215 кгс/мм2 и имеет относительно невысокие значения предела усталости ( -1 ) и сопротивление срезу ( ср. ).

Технической задачей, на решение которой направлено изобретение, является создание конструкционной стали, обладающей повышенными характеристиками прочности, текучести, усталостной прочности, сопротивления срезу при сохранении достаточной вязкости, пластичности, высокого сопротивления коррозионно-водородному растрескиванию.

Для решения поставленной задачи предложена высокопрочная конструкционная сталь, содержащая углерод, кремний, марганец, хром, никель, молибден, ванадий и железо, не менее одного элемента из группы щелочноземельных металлов, включающей магний и кальций, элемент из группы редкоземельных металлов, включающей лантан и церий, отличающаяся тем, что она дополнительно содержит кобальт при следующем соотношении компонентов, мас.%:
Углерод - 0,36 - 0,44
Кремний - 2,6 - 3,0
Марганец - 0,10 - 0,5
Хром - 1,0 - 1,3
Никель - 3,5 - 4,8
Кобальт - 2,0 - 4,5
Молибден - 0,3 - 0,9
Ванадий - 0,05 - 0,15
Не менее одного элемента из группы щелочноземельных металлов, включающей магний и кальций - 0,001 - 0,05
Элемент из группы редкоземельных металлов, включающей лантан и церий - 0,001 - 0,05
Железо - остальное.

Отличие предложенной стали от известной заключается в том, что в состав стали введен кобальт, увеличено содержание никеля до 3,5 - 4,8% и кремния до 2,6 - 3,0%.

В предлагаемой композиции легирование стали кобальтом позволяет получить более высокий предел прочности, текучести, сопротивление усталости и срезу стали без ухудшения сопротивления коррозионно-водородному растрескиванию при хорошей вязкости и пластичности. Увеличение количества никеля в стали сохраняет при высокой прочности стали (210-230 кгс/мм2) хорошую вязкость, пластичность, особенно при низких температурах.

Пример осуществления.

Для подтверждения принципов легирования новой стали в лабораторных условиях выплавлена сталь предлагаемого состава. Выплавка производилась на чистых шихтовых материалах в вакуумно-индукционной печи емкостью до 100 кг с последующим вакуумно-дуговым переплавом.

Образцы подвергались закалке с 950-1000oC и низкому отпуску при 200-300oC.

В табл. 4, 5 приведен полученный химический состав плавок и их механические свойства.

По сравнению с прототипом новая сталь обладает значительно более высокими значениями предела прочности, текучести, сопротивлением усталости и срезу при хорошей пластичности, вязкости, сопротивлении коррозионно-водородному растрескиванию.

Высокие физико-механические свойства стали определяются ее рациональным легированием кобальтом, никелем, кремнием.

Запредельные отклонения по химическому составу или не позволяют получить требуемые прочностные свойства, или снижают значения вязкости и пластичности стали.

Таким образом, предлагаемая сталь за счет комплексного легирования при строгом соотношении легирующих элементов обеспечивает предел прочности в = 210-230 кгс/мм2; 0,2 = 170-190 кгс/мм2 при удовлетворительной пластичности, вязкости, что позволяет снизить массу и габариты изделий новой техники при надежной их эксплуатации.

Использованная литература
1. Потак Я.М. Высокопрочные стали.- М.: Металлургия, 1972, с. 22.

2. Хайнес А. Г., Блауер Р. Влияние химического состава на свойства высокопрочных мартенситных сталей.- Высокопрочная сталь.- Металлургия, 1965, с. 90.

3. Патент РФ N 1316285 "Высокопрочная конструкционная сталь".


Формула изобретения

Высокопрочная конструкционная сталь, содержащая углерод, кремний, марганец, хром, никель, молибден, ванадий и железо, не менее одного элемента из группы щелочноземельных металлов, включающей магний и кальций, элемент из группы редкоземельных металлов, включающей лантан и церий, отличающаяся тем, что она дополнительно содержит кобальт при следующем соотношении компонентов, мас.%:
Углерод - 0,36 - 0,44
Кремний - 2,6 - 3,0
Марганец - 0,10 - 0,5
Хром - 1,0 - 1,3
Никель - 3,5 - 4,8
Кобальт - 2,0 - 4,5
Молибден - 0,3 - 0,9
Ванадий - 0,05 - 0,15
Не менее одного элемента из группы щелочноземельных металлов, включающей магний и кальций - 0,001 - 0,05
Элемент из группы редкоземельных металлов, включающей лантан и церий - 0,001 - 0,05
Железо - Остальное

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к металлургии сталей, используемых в ядерной энергетике, в частности для изготовления корпусов реакторов, внутриреакторного оборудования

Изобретение относится к области металлургии, т.е

Изобретение относится к области металлургии, в частности к составу дисперсионно-твердеющей мартенситовой нержавеющей стали с высокой прочностью в сочетании с пластичностью

Изобретение относится к области металлургии, в частности к сталям для валков, и может быть использовано при изготовлении рабочих и опорных валков с повышенными требованиями по твердости, глубине активного закаленного слоя на валках, а также повышенными сопротивлением разупрочнению при отпуске и износостойкостью при достаточной технологичности в сталеплавильном и кузнечном переделах

Изобретение относится к области металлургии, в частности к высокопрочным коррозионно-стойким сталям, обладающим хорошей свариваемостью, не требующих тормообработки после сварки и имеющих высокое сопротивление коррозии под напряжением сварных соединений

Изобретение относится к составу стали для сварочной проволоки, используемой при дуговой автоматической сварке под флюсом

Изобретение относится к составу для сварочной проволоки для дуговой, преимущественно полуавтоматической сварки, в среде углекислого газа стали с любым содержанием азота, проводимой на форсированном режиме

Изобретение относится к металлургии

Изобретение относится к порошковой металлургии, в частности к износостойким порошковым материалам для режущего инструмента на стальной основе

Изобретение относится к металлургии, в частности к созданию высокопрочной корозионно-стойкой стали аустенитно-мартенситного класса, предназначенной для изготовления высоконагруженных крупногабаритных деталей машин, таких как шасси, рамы, лонжероны, узлы поворота, силовой крепеж и др., работающих при температуре от -70 до +300°С

Изобретение относится к металлургии, в частности к производству высокопрочных коррозионностойких мартенситностареющих сталей криогенного назначения для изготовления силовых литых деталей энергетических установок, работающих при температурах от -196 до 300oC

Изобретение относится к металлургии, в частности к производству высокопрочных коррозионностойких мартенситностареющих сталей криогенного назначения для изготовления паяно-сварных конструкций энергетических установок, работоспособных при температурах от -253 до 500oC

Изобретение относится к металлургии, а именно к прецизионным литейным сплавам, обладающим минимальным коэффициентом теплового расширения, и может быть использовано в лазерной технике, прецизионном приборостроении, в оптоэлектронной технике и в других областях, в частности для изготовления деталей, работающих в контакте с материалом на основе кварца

Изобретение относится к металлургии сложно легированных сварочных материалов для наплавки антикоррозионного покрытия изделий атомного энергомашиностроения

Изобретение относится к черной металлургии, а именно к производству горячекатаной и холоднокатаной тонколистовой углеродистой стали, преимущественно для производства пил для резки дерева, пластмасс, цветных металлов и сплавов

Изобретение относится к области металлургии, в частности к коррозионно-стойким сталям, используемым в качестве конструкционных материалов активных зон атомных реакторов
Изобретение относится к металлургии, в частности к получению высокопрочной теплостойкой проволоки из коррозионно-стойкой аустенитной стали для изготовления упругих элементов

Изобретение относится к области металлургии, а именно к изделиям из инструментальной стали для холодных работ
Изобретение относится к металлургии конструкционных сталей и сплавов, содержащих в качестве основы железо с заданным соотношением легирующих и примесных элементов, и предназначено для использования в энергетическом машиностроении при производстве сварных конструкций трубопроводов и трубных систем, отвечающих требованиям эксплуатации и промышленной безопасности современного реакторного оборудования термоядерной и водородной энергетики
Наверх