Способ осуществления трехфазных каталитических процессов

 

Изобретение относится к химии, а именно к катализу трехфазных процессов "газ-жидкость-твердое". Технический результат - преодоление вызываемых диффузионным торможением ограничений активности и селективности без применения мелкодисперсных катализаторов. В предлагаемом изобретении процесс осуществляют в режиме вынужденного потока реактантов сквозь однородные макропористые каталитические мембраны с порами диаметром не менее 50 нм при объеме пор не менее 0,05 см3/см3. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области химии, а именно к катализу трехфазных процессов "газ-жидкость-твердое".

Трехфазные каталитические процессы типа "газ-жидкость-твердое" традиционно проводят в реакторах периодического действия, где реакция между газом и жидкостью протекает на суспендированных порошкообразных катализаторах при интенсивном перемешивании реакционной смеси / G.C.Bond, Heterogeneous Catalysis: Principles and Applications, Clarendon, Oxford, 1987/. Подобная организация процесса обусловлена необходимостью снижения негативного влияния внешней и внутренней диффузии реактантов на активность и селективность реакции.

Существенным недостатком традиционного способа осуществления процесса является необходимость отделения мелких частиц катализаторов от реакционной смеси по завершении реакции.

Один из возможных путей интенсификации межфазного массообмена состоит в обеспечении вынужденного (под влиянием градиента давления) потока реагирующей смеси сквозь однородные поры каталитической мембраны. Подобная ситуация принципиально недостижима, если в качестве носителя используются традиционные зернистые пористые материалы: в последнем случае транспорт реагентов внутри пористого зерна является исключительно диффузионным (фиг. 1). Разный характер транспорта вещества в порах мембраны и зернистого катализатора может приводить к различиям в условиях массо- и теплообмена, причем вынужденный поток сквозь пористую каталитическую мембрану способен обеспечить более высокие коэффициенты переноса массы и тепла. В случае наличия внутридиффузионного торможения на зернистом катализаторе последнее обстоятельство открывает возможность более эффективного осуществления реакции с повышением наблюдаемой активности и селективности в присутствии пористой каталитической мембраны.

На фиг. 1 приведена принципиальная схема массопереноса при движении потока вещества сквозь пористую мембрану (А) и слой гетерогенного катализатора (Б).

Каталитические мембраны различных типов применяются в гетерогенно-каталитических процессах начиная с 1960-х годов.

Известно применение непористых / Патент США N 3290406, 1966/, мезопористых /J.Peureux, M.Torres, H.Mozzanega, Nitrobenzene liquid-phase hydrogenation in a membrane reactor. Catalysis Today, 25 (1995) 409-415/ и микропористых /C. Lange, S.Storck, B.Tesche, J.Catalysis, 175 (1998) 280/ каталитических мембран в гетерогенно-каталитических процессах.

Общим недостатком упомянутых аналогов является необходимость применения дорогостоящих металлических или композитных керамических мембран, а также малая каталитически активная поверхность мембраны, близкая к ее геометрической наружной поверхности.

Известна работа /C.Lange, S.Storck, B.Tesche and W.F.Maier, J.Catalysis, 175 (1998) 280/. Каталитическая мембрана обладает анизотропной структурой с микропористым селективным разделяющим слоем (номинальный диаметр пор порядка 0,5-1 нм, толщина селективного слоя порядка 0,2-0,5 мкм), причем каталитически активный компонент (Pt) находится именно в этом слое. Эти особенности обусловливают следующие недостатки: высокое гидравлическое сопротивление каталитической мембраны проникающему сквозь нее потоку реагирующей смеси (углеводороды с растворенным в них водородом); малое количество каталитически активного компонента в мембране (порядка 110-7 моль Pt в мембране массой порядка 4-5 г), следствием чего является низкая каталитическая активность на единицу массы мембраны.

Наиболее близким является способ проведения каталитических процессов в газовых и жидких средах на твердофазных катализаторах в виде пористых каталитических мембран /Патент РФ 2073559 C1, МПК 7 B 01 J 12/00, 1997/. Поток газа или жидкости направляют в каталитический блок, представляющий собой послойно расположенные рифленые и плоские панели с нанесенным на них катализатором, при этом плоские панели выполнены из пористого проницаемого материала. Недостатком является высокое гидравлическое сопротивление каталитической мембраны проникающему сквозь нее потоку реагирующей смеси и невысокая каталитическая активность на единицу массы мембраны.

Задачей, на решение которой направлено предлагаемое изобретение, является разработка способа осуществления трехфазных каталитических процессов, свободного от указанных недостатков и позволяющего преодолеть вызываемые диффузионным торможением ограничения активности и селективности.

Для решения поставленной задачи предлагается осуществлять трехфазные каталитические процессы в режиме вынужденного потока реактантов сквозь однородные макропористые каталитические мембраны с порами диаметром не менее 50 нанометров при объеме пор не менее 0,05 см3/см3, при этом каталитические мембраны разделяют реактор на несколько зон.

На основе применения подобных мембран массообмен между реактантами и гетерогенным катализатором может быть интенсифицирован. Интенсификация массообмена в свою очередь может приводить к увеличению наблюдаемой активности и селективности катализаторов.

В предлагаемом изобретении на мембрану, обладающую развитой однородной макропористой структурой, равномерно наносят каталитически активный компонент. Мембрана обладает малым гидравлическим сопротивлением проникающему сквозь нее потоку реагирующей смеси, и может содержать высокое (до нескольких процентов относительно веса мембраны) количество каталитически активного компонента. Каталитическую мембрану устанавливают в реактор таким образом, что реакционная смесь проходит сквозь поры мембраны под действием избыточного давления реакционного газа и при необходимости рециркулирует.

Изобретение иллюстрируется следующими примерами: Пример 1.

Реакция окисления сульфид-ионов кислородом в воде Реакцию окисления сульфид-ионов проводят в водных растворах при комнатной температуре в присутствии катализатора - натриевой соли тетрасульфофталоцианина кобальта (Na-ТСФК), нанесенного на полимерную микрофильтрационную мембрану МИФИЛ (толщина мембраны 120 мкм, диаметр пор 0,4 мкм, удельная поверхность 24 м2/г). Каталитическая реакция окисления сульфид-ионов протекает согласно уравнению (А): S2-+O2--->S,SO32-, S2O32-, SO42- (A) В зависимости от pH раствора в реакции образуется ряд продуктов, причем сера является основным продуктом при нейтральных pH, тогда как более высокие значения pH стимулируют образование кислородсодержащих соединений.

Нанесение катализатора на мембрану проводят путем адсорбции Na-ТСФК из водных растворов при комнатной температуре, получая каталитически активные макропористые мембраны с содержанием Na-ТСФК 0,2-60 мг на 1 г мембраны-носителя.

Образец каталитической мембраны, приготовленный как описано выше и содержащий адсорбированный Na-ТСФК в количестве 2,6 мг/г, помещают в термостатированный мембранный реактор с магнитной мешалкой (фиг. 2), куда заливают 250 см3 водного раствора Na2S с концентрацией 0,04 моль/л. Раствор имеет pH 13. После этого реактор вакуумируют, а затем в него подают кислород при давлении 0,12 МПа. Водный раствор Na2S под действием избыточного давления кислорода проникает сквозь мембрану и рециркулирует в системе (вентиль на выходе из реактора открыт). На фиг. 2. приведена принципиальная схема каталитического мембранного реактора.

Катализатор в растворе до и после мембраны отсутствует, что свидетельствует о прочной адсорбции его на мембране. Каталитическая конверсия S2- при прохождении раствора сквозь мембрану составляет 15% при времени контакта 1 мин.

Пример 2 (сравнительный).

Аналогично примеру 1, но в отсутствие протока раствора Na2S сквозь каталитическую мембрану (вентиль на выходе из реактора закрыт). Продолжительность опыта - 3 часа. Каталитическое окисление S2- не протекает.

Пример 3 (сравнительный).

Каталитическая мембрана, испытанная в примерах 1 и 2, разрезана на куски размером 2 х 2 мм и испытана в условиях, аналогичных примеру 2. Продолжительность опыта - 3 часа. Каталитическое окисление S2- не протекает.

Пример 4.

Реакция гидрирования подсолнечного масла Реакция гидрирования подсолнечного масла протекает на никелевых и палладиевых катализаторах по следующей схеме: Целевая реакция - последовательное гидрирование двойных связей C=C в триглицеридах полиненасыщенных жирных кислот - сопровождается нежелательными побочными процессами, наиболее важными из которых является изомеризация исходной цис-формы в транс-форму. Присутствие транс-изомеров в маргаринах и кулинарных жирах повышает риск возникновения коронарных сердечно-сосудистых заболеваний, и потому должно быть сведено к минимуму. Цель настоящего этапа состоит в снижении выхода транс-изомеров при гидрировании подсолнечного масла на палладиевых катализаторах.

Входящие в состав растительных и животных жиров жирные кислоты различаются по количеству углеродных атомов в цепи, количеству и положению двойных связей C=C и изомерному составу (цис- и транс-конфигурация). Наиболее распространенными являются ненасыщенные жирные кислоты - линоленовая, линолевая, олеиновая (цис-изомеры), а также насыщенная стеариновая кислота. Жирные кислоты обычно идентифицируют по числу углеродных атомов и количеству двойных связей. В такой нотации линоленовая кислота обозначается как 18:3, линолевая 18:2, олеиновая 18:1, а стеариновая 18:0.

Каталитическую мембрану, содержащую 2 мас.% палладия, готовят адсорбцией палладия из бензольного раствора Pd3(OAc)6 при комнатной температуре на мембране МИФИЛ. Высушенные образцы восстанавливают в водном растворе KBH4, промывают дистиллированной водой и высушивают в вакууме при комнатной температуре.

Каталитическую мембрану, приготовленную как описано выше, устанавливают в реактор, аналогичный изображенному на фиг. 2. Реакцию гидрирования подсолнечного масла проводят в режиме протока масла сквозь мембрану при температуре 348К и давлении водорода 0,35 МПа, анализируя концентрации цис- и транс-изомерных триглицеридов жирных кислот 18: 1 при изменении степени превращения исходного триглицерида 18:2 (цис-форма). При степени превращения 63% получают продукт, содержащий 39% цис-изомерных и 11% транс- изомерных триглицеридов 18:1.

Пример 5 (сравнительный).

Аналогичную процедуру используют и для приготовления палладиевого катали затора на гранулированном углеродном носителе Сибунит /Патент РФ N 1706690, МПК B 01 J 20/20, опубл. 23.01.92, БИ N 3/ со средним радиусом пор 40 нм. Полученный катализатор содержит 2 мас.% палладия. Перед использованием в реакции гидрирования подсолнечного масла катализатор Pd/C измельчают до фракции менее 10 мкм.

Реакцию гидрирования подсолнечного масла в присутствии катализатора Pd/C, приготовленного как описано выше, проводят в статическом лабораторном реакторе с перемешиванием при температуре 348К и давлении водорода 0,35 МПа.

При степени превращения исходного триглицерида (цис-18:2) 63 % получают продукт гидрирования, содержащий 31% цис-изомерных и 18% транс-изомерных триглицеридов 18:1.

Пример 6.

Реакция восстановления нитрат-ионов водородом в воде Реакция восстановления нитрат-ионов водородом в воде в присутствии биметаллических палладий-медных катализаторов протекает по последовательно-параллельной схеме
Каталитическую мембрану готовят путем пропитки керамической мембраны-носителя (диск диаметром 45 мм и толщиной 4,6 мм, диаметр пор 1 мкм, удельная поверхность 1 м2/г) водным раствором нитрата меди и хлорида палладия с последующей сушкой при комнатной температуре, окислением воздухом при 573К и восстановлением водным раствором NaBH4 при комнатной температуре.

В условиях протока раствора NaNO3 сквозь каталитическую мембрану (вентиль на выходе из реактора открыт). 90%-ную конверсию NO3-достигают за 110 минут.

Пример 7 (сравнительный).

Каталитическую мембрану, содержащую 1,6 мас.% палладия и 1,2 мас.% меди, помещают в реактор, аналогичный изображенному на фиг. 2, и испытывают в реакции восстановления нитрат-ионов. Для этого в реактор заливают водный раствор нитрата натрия и подают водород. В первом опыте вентиль на выходе из реактора был закрыт, в результате чего пористое пространство мембраны с активным компонентом Pd-Cu, находящимся на стенках пор, было доступно реактантам лишь за счет диффузии.

При температуре 298K, давлении водорода = 1,1 атм, начальной концентрации нитрат-ионов = 200 мг/л и объеме раствора 100 см3, 90%-ная конверсия NO3- была достигнута за 1100 минут.

Таким образом, предлагаемый способ осуществления трехфазных каталитических процессов в режиме вынужденного потока реакционного раствора сквозь макропористую каталитическую мембрану приводит к многократному повышению наблюдаемой активности катализатора и может найти широкое применение в химической и пищевой промышленности.


Формула изобретения

1. Способ осуществления трехфазных каталитических процессов в присутствии пористых каталитических мембран, отличающийся тем, что процесс осуществляют в режиме вынужденного потока реакторов сквозь однородные макропористые каталитические мембраны.

2. Способ осуществления трехфазных каталитических процессов по п.1, отличающийся тем, что используют мембраны с порами диаметром не менее 50 нм при объеме пор не менее 0,05 см3/см3.

3. Способ осуществления трехфазных каталитических процессов по пп.1 и 2, отличающийся тем, что каталитические мембраны разделяют реактор на несколько зон.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к области нефтехимии, в частности к реакторам для дегидрирования парафиновых углеводородов

Изобретение относится к устройствам для каталитического дегидрирования углеводородов, в частности к реакторам радиального типа, и может быть использовано в нефтехимической промышленности при дегидрировании этилбензола в стирол

Изобретение относится к способу гетерогенного экзотермического синтеза формальдегида при избыточном количестве кислорода, в частности в реакторах синтеза, которые имеют несколько соединенных последовательно адиабатических каталитических слоев, включающему следующие стадии: подачу газообразных реагентов, содержащих метанол и избыточное количество кислорода в первый из указанных каталитических слоев; прохождение указанных газообразных реагентов через каталитические слои, сопровождающееся частичным окислением метанола

Изобретение относится к способу модернизации реакторов для повышения эффективности гетерогенного экзотермического синтеза

Изобретение относится к процессам и аппаратам химической технологии и может быть использовано для осуществления экзотермического гетерогенного синтеза, в частности в производстве метанола или аммиака из синтез-газа

Изобретение относится к химическому реактору и способу с использованием химического реактора, в котором применяют установку теплообменных перегородок, внутри реактора, которые будут поддерживать температуру внутри реактора в желаемом интервале во время реакции

Изобретение относится к способу изготовления сотового элемента из металлических листов, набранных в пакет и/или свернутых в рулон

Изобретение относится к каталитическим преобразователям

Изобретение относится к производству азотной кислоты, а именно к сеткам из благородных металлов, которые в виде пакетов применяются для улавливания платины и родия, улетучивающихся с поверхности катализатора при реакции окисления аммиака

Изобретение относится к устройству и способу для изготовления элемента с сотовой структурой, состоящего из множества по меньшей мере частично структурированных металлических листов, образующих множество каналов для прохождения текучей среды

Изобретение относится к металлическому элементу с сотовой структурой, имеющему большое количество каналов для текучей среды, расположенных в направлении движения потока и выполненных из металлических листов

Изобретение относится к многоцелевой каталитической дистилляционной колонне и к применению этой колонны для получения эфира посредством взаимодействия изоолефина со спиртом

Изобретение относится к способу изготовления сотового элемента из термостойких металлических листов, набранных в пакет и/или свернутых в рулон
Наверх