Способ изготовления труб

 

Изобретение относится к производству труб, подвергаемых химико-термической обработке, и может быть использовано при изготовлении труб, работающих в условиях знакопеременной нагрузки при изгибе с внутренним давлением, в частности нефтепромысловых труб в бунтах. Задача, решаемая изобретением, заключается в повышении эксплуатационных характеристик трубы за счет повышения пластичности наружного слоя и прочности внутреннего. При изготовлении труб, преимущественно длинномерных в бунтах, ведут нагрев труб и намотку в бунты в газовой среде. При этом в процессе нагрева обезуглероживают наружную поверхность труб, а внутреннюю поверхность подвергают упрочнению с помощью химико-термической обработки.

Изобретение относится к области производства труб, подвергаемых химико-термической обработке, и может быть использовано при изготовлении труб, работающих в условиях знакопеременной нагрузки при изгибе с внутренним давлением, в частности нефтепромысловых труб в бунтах.

Известен способ изготовления стальных изделий, в частности труб (пат. РФ N 2107745, C 23 C 8/32, 1998, БИ N 9), включающий нагрев изделий до аустенитного состояния в смеси науглероживающего и азотирующего газов с выдержкой при этой температуре и охлаждение. Охлаждение изделий осуществляют со скоростью, предотвращающей распад аустенита до температуры 500-600oC. Дальнейшую химико-термическую обработку (в частности, цианирование) производят при изотермическом фазовом превращении аустенита.

Недостатком данного способа является то, что при осуществляемой химико-термической обработке труб упрочнению подвергаются как внутренняя, так и наружная поверхности.

Упрочнение наружной поверхности при многоцикличном знакопеременном изгибе трубы приводит к разрушению верхнего слоя и в дальнейшем всей стенки трубы, что не применимо для труб, работающих при многоцикличном изгибе, например бунтовых нефтепромысловых труб.

Известен способ упрочнения труб, преимущественно внутренней поверхности высокотемпературной цементацией (а. с. СССР N 1172294, C 23 C 9/00, 11/10, 11/12, 1985). Согласно изобретению полость трубы заполняют углеродосодержащей газообразной смесью, нагревают до заданной температуры при непрерывном вращении трубы. После проведения цементации внутренней поверхности производят закалку. После охлаждения механические свойства наружного слоя трубы остаются неизменными, по сравнению с исходными, или несколько изменяются из-за подкалки материала. Недостатком способа является то, что при многократном знакопеременном изгибе на наружной поверхности трубы в результате поочередного действия растягивающих и сжимающих напряжений образуются трещины, приводящие к разрушению трубы.

Внутренний слой, имеющий литую высокоуглеродистую структуру, также склонен к разрушению при многоцикличном изгибе.

Наиболее близким техническим решением, принятым за прототип, является способ намотки полученных прокаткой лент, проволоки или труб, который осуществляют внутри заполненной газом-раскислителем камеры (заявка Франции N 2238540, B 21 C 47/00, 43/00, опубл. 1975).

Однако данный способ не обеспечивает оптимального распределения механических свойств по сечению трубы, а следовательно, их эксплуатационных характеристик в условиях многоцикличного изгиба.

Техническая задача, решаемая изобретением, заключается в повышении эксплуатационных характеристик трубы за счет повышения пластичности наружного слоя и прочности внутреннего.

Поставленная задача решается за счет того, что в способе изготовления труб, преимущественно длинномерных в бунтах, включающем нагрев труб и намотку в бунтах в газовой среде, согласно изобретению в процессе нагрева обезуглероживают наружную поверхность труб, а внутреннюю поверхность подвергают упрочнению с помощью химико-термической обработки.

Сущность изобретения заключается в следующем. В процессе нагрева трубы, например при перемотке ее с барабана на барабан, осуществляют два разных физико-химических процесса: газовую химико-термическую обработку внутренней поверхности трубы, приводящую к повышению ее прочности, и газовую обработку наружной поверхности, повышающую ее пластичность за счет снижения содержания углерода - обезуглероживания. Достигаемое распределение механических свойств материала по сечению трубы обеспечивает оптимальное условие ее работы при многократном ее изгибе и внутреннем давлении. Именно при такой нагрузке работает нефтепромысловая длинномерная бунтовая труба при ремонте и эксплуатации скважин. При знакопеременном изгибе наибольшую нагрузку воспринимает наружная поверхность трубы (Ю.М.Матвеев, М.Я.Кричевский. Отделка труб. М., 1954, с. 56-67). Высокая пластичность наружной поверхности обеспечивает повышенную выносливость при размотке - смотке трубы в процессе эксплуатации на скважинах. Сопротивление внутреннему давлению, возникающему при перекачке жидкости, воспринимают, в основном, внутренние слои трубы (Н.М.Беляев. Сопротивление материалов. М. , 1976, с. 418- 427). Повышение их механических свойств за счет химико-термической обработки снижает тенденцию к разрушению трубы изнутри.

Предлагаемый способ осуществляют следующим образом. Электросварную трубу размером 38 х 3 мм из стали марки Ст2, ГОСТ 380-88, в процессе технического контроля при перемотке с барабана на барабан нагревают на заданном участке с помощью индуктора, размещенного в специальной камере. Температура нагрева составляет 850-950oC. Внутрь камеры подают обезуглероживающую смесь газов CO2+H2O (пар). При скорости перемещения трубы 3,5-4,0 м/мин глубина обезуглероживания достигает величины 0,2-0,25 мм. Одновременно внутрь трубы через ее торец, закрепленный в барабане, подают смесь науглероживающего и цементирующего газов, например светильного газа и аммиака. Глубина цианированного слоя при указанных условиях достигает 0,18-0,20 мм, что обеспечивает повышение прочностных характеристик внутренней поверхности труб в 1,3-1,35 раза. В процессе химико-термической обработки трубу наматывают на барабан диаметром 1800 мм, подвергая охлаждению водой. Длина трубы в бунте 2500 м.

Исследования, проведенные на трубах размером 38 х 3 мм из стали марки Ст2, ГОСТ 380-88, показали, что при внутреннем давлении 10 МПа трубы, изготовленные по известной технологии, выдержали 210 двойных циклов при знакопеременном изгибе; по заявленному способу - 295 циклов.

Предложенный способ изготовления труб позволяет повысить работоспособность труб в условиях знакопеременной нагрузки и внутреннего давления. Способ может найти широкое применение в нефтедобывающей промышленности, в частности при подземном ремонте скважин, их промывке и пр.

Формула изобретения

Способ изготовления труб, включающий нагрев труб и намотку в бунты в газовой среде, отличающийся тем, что нагрев ведут в процессе намотки трубы, одновременно осуществляют обезуглероживание наружной поверхности трубы и упрочнение внутренней поверхности трубы путем химико-термической обработки.



 

Похожие патенты:

Изобретение относится к химико-термической обработке полых изделий, в частности к индукционным установкам для газовой цементации металла внутренней поверхности труб с непрерывно-последовательным нагревом их в горизонтальном положении

Изобретение относится к химико-термической обработке стальных изделий, преимущественно внутренней поверхности труб, работающих в трущихся парах

Изобретение относится к химико-термической обработке стальных изделий и может быть использовано при производстве трубчатых изделий с высокопрочным внутренним покрытием

Изобретение относится к химикотермической обработке и может быть использовано для нанесения покрытий на внутренние поверхности полых деталей, преимущественно труб, работающих в условиях интенсивного износа, например труб бурильных установок

Изобретение относится к химико термической обработке и может быть использовано в машиностроении и других отраслях промышленности

Изобретение относится к металлургии, в частности к химико-термической обработке металлических изделий в порошковых средах, и может быть использовано в приборостроительной, авиационной, машиностроительной и других отраслях промышленности

Изобретение относится к области теплотехники, в частности к способам химико-термической обработки изделий, например их цементации и нитроцементации, и может найти применение в машиностроительной, авиационной, автомобильной промышленности

Изобретение относится к области металлургии, в частности к способам диффузионного насыщения поверхностных слоев материалов, и может быть использовано в авиационной, судостроительной и энергомашиностроительной промышленности

Изобретение относится к способам изготовления стабильных поверхностных покрытий за счет катодного распыления, напыления, осаждения из ванных или MOCVD и может найти применение при защите и модификации поверхностей, в том числе со скрытыми структурами, а также при нанесении функциональных слоев, в частности, в гелиотехнике и технике материалов

Изобретение относится к области машиностроения, а именно к технологии производства титановых конструкций, и может быть использовано, например, в авиастроении

Изобретение относится к химико-термической обработке и может быть использовано в машиностроительной и химической отраслях промышленности в устройствах для термодиффузионного легирования изделий

Изобретение относится к области термической (объемной) и химико-термической (поверхностной) обработок деталей машин и инструмента в специализированном технологическом оборудовании

Изобретение относится к технологии улучшения функциональных деталей и способу получения износостойких и обладающих высокой усталостной прочностью поверхностных слоев на деталях из титановых сплавов и к изготовленным этим способом деталям

Изобретение относится к области химико-термической обработки металлов. Устройство для химико-термической обработки деталей в несамостоятельном тлеющем разряде содержит вакуумную камеру с подложкой для размещения деталей, источник питания, соединенный отрицательным полюсом с подложкой, а положительным - с корпусом камеры, термоэмиссионный электрод и второй источник питания, соединенный отрицательным полюсом с термоэмиссионным электродом, а положительным - с корпусом камеры. Термоэмиссионный электрод выполнен в виде состоящей из дисков ступенчатой фазовой зонной пластинки Френеля с изменяющейся на π фазой колебаний ее четных зон. Установлены математические формулы для определения величины ступеньки и радиусов дисков фазовой зонной пластинки Френеля. Обеспечивается повышение предела выносливости деталей. 2 ил.

Изобретение относится к машиностроению, в частности к способам повышения механических свойств приповерхностных слоев деталей машин из сплавов на основе железа с получением субмикро- или наноструктурированного состояния диффузионных слоев. Способ включает сборку пакета из попеременно чередующихся стальных листов, имеющих различный химический состав, вакуумирование и нагрев пакета, горячую деформацию пакета по высоте при температуре, находящей между значениями температур полиморфных превращений обоих сплавов, при этом после горячей деформации из пакета вырезают заготовки деталей таким образом, чтобы при последующем азотировании направление межслойных границ в заготовке детали совпадало с направлением диффузионного потока азота, после чего проводят азотирование с получением субмикро- и наноструктурированного состояния диффузионного приповерхностного слоя на поверхности детали. Способ позволяет повысить механические свойства приповерхностных слоев материала, формирующихся в результате азотирования, и, соответственно, увеличить долговечность деталей. 9 ил., 1 пр.

Изобретение относится к области металлургии, а именно к составу и способу производства композиционного материала с заранее заданными свойствами, например элементов бронезащиты высокого класса, режущего элемента, элементов станочных конструкций. Композиционный материал на основе титанового сплава состоит из основного металла титанового сплава и модифицированного поверхностного слоя. Модифицированный поверхностный слой состоит из лицевого слоя с керамической структурой, слоя с металлокерамической структурой и слоя с переходной структурой от слоя с металлокерамической структурой к основному металлу титанового сплава и содержит насыщенный твердый раствор азота в титане с внедренными в нее керамическими частицами TiNx, и/или TiCx, и/или TixNyCz. Лицевой слой имеет толщину от 0,08 мм до 0,5 мм и твердость не менее 62 HRC. Слой с металлокерамической структурой имеет толщину от 0,5 до 24 мм и твердость от 50 HRC до 74 HRC. Слой с переходной структурой имеет толщину от 5 до 10% от толщины металлокерамического слоя и твердость от 60 до 30 HRC, снижающуюся при переходе от слоя с металлокерамической структурой к основному металлу титанового сплава. Способ изготовления композиционного материала включает нагрев поверхности титанового сплава высококонцентрированным движущимся источником тепловой энергии в газовой атмосфере, содержащей модифицирующие компоненты. Нагрев и переплав поверхности титанового сплава осуществляют плазменной погруженной дугой прямого действия при удельном тепловом потоке в центре пятна от 104 до 105 Вт/см2, силе тока 50-450 А, напряжении дуги от 20 до 40 В и скорости перемещения источника тепловой энергии относительно поверхности титанового сплава от 0,003 до 0,01 м/с, а газовая атмосфера содержит смесь аргона с добавлением модифицирующих компонентов азота и/или углерода в виде содержащего углерод газа. Материал характеризуется высокими значениями прочности, твердости, термической и коррозионной стойкости и износостойкости. 2 н. и 6 з.п. ф-лы, 3 ил., 1 табл.
Наверх