Жаропрочный сплав на основе никеля и изделие, выполненное из этого сплава

 

Изобретение относится к области металлургии жаропрочных свариваемых сплавов на никелевой основе и изделий, выполненных из этих сплавов, для авиационной техники, машиностроения и народного хозяйства. Сплав обладает повышенными значениями рабочих температур пределов длительной прочности, выносливости и термостойкости и имеет следующий химический состав, мас.%: углерод 0,01-0,07, хром 20,0-30,0, кобальт 10,0-20,0, вольфрам 5,0-16,0, молибден 0,5-5,0, лантан 0,02-0,08, магний 0,02-0,10, титан 2-4, азот 0,5-2,0, никель - остальное. Техническим результатом изобретения является повышение рабочей температуры материала до 1300°С, увеличение характеристик длительной прочности, выносливости и термостойкости, что позволит повысить КПД применяемых в газотурбинных двигателях жаровых труб, экранов и т.д. на 5-10%, увеличить ресурс двигателя в 1,5-2 раза, снизить вес на 8-12%. 2 с.п. ф-лы, 2 табл.

Предлагаемое изобретение относится к области металлургии жаропрочных свариваемых листовых сплавов на никелевой основе и может быть использовано для изготовления изделий в авиационной технике, машиностроении и в народном хозяйстве, например: жаровых труб камер сгорания, стабилизаторов пламени и других горячих деталей газотурбинных двигателей, работающих до температур 1300oC.

В настоящее время в нашей стране и за рубежом широко применяются жаропрочные сплавы Heines 188 (1) и ЭИ 868 (2), которые используются в таких изделиях, как например, в деталях горячего тракта ГТД (жаровые трубы, экраны и т.д.).

Однако, уровень жаропрочности этих сплавов позволяет эксплуатировать их только до температур 1000-1050oC, что ограничивает уровень технических характеристик изготовляемых из них изделий, делает их недостаточно эффективными.

Наиболее близким к предлагаемому сплаву является сплав ХН33КВ (ЭК 102, ВЖ 145), имеющий следующий химический состав, мас.%: (3) Углерод - 0,02 - 0,1 Хром - 20,0 - 25,0 Кобальт - 25,0 - 32,0 Вольфрам - 10,0 - 16,0 Алюминий - 0,2 - 0,7 элемент, выбранный из группы: Лантан - 0,01 - 0,1 Неодим - 0,01 - 0,1 Никель - Остальное
Сплав ХН33КВ работоспособен до 1000 - 1050oC и обладает следующими свойствами:




Термостойкость (количество циклов до образования трещины) по режиму испытания 1000 200oC - 100 циклов.

Температура эксплуатации данного сплава ограничена 1050oC. Сплав не обладает достаточно высокими значениями длительной прочности, выносливости и термостойкости. Изделия, выполненные из этого сплава (жаровые трубы, экраны и т. д.), имеют относительно низкие температуры работы и, как следствие, не обладают нужным КПД. Кроме того, ресурс этих изделий ограничен.

Технической задачей данного изобретения является повышение рабочей температуры материала до 1300oC, увеличение значений характеристик длительной прочности, термостойкости и выносливости, повышения КПД и ресурса работы изделий, выполненных из этого сплава.

Для достижения поставленной задачи предложен сплав следующего химического состава, мас.%:
Углерод - 0,01-0,07
Хром - 20,0-30,0
Кобальт - 10,0-20,0
Вольфрам - 5,0-16,0
Молибден - 0,5-5,0
Титан - 1,0-4,0
Лантан - 0,02-0,08
Магний - 0,02-0,08
Азот - 0,5-2,0
Никель - Остальное
Введение в состав сплава азота и титана позволяет путем проведения химико-термической обработки образовать в его структуре мелкодисперсные частицы нитридов титана, стойкие вплоть до температуры плавления матрицы и обеспечивающие высокую жаропрочность, термостойкость и выносливость сплава до температуры 1300oC.

Молибден повышает силы межатомных связей в гранецентрированной кубической решетке -твердого раствора и увеличивает растворимость азота, а следовательно, жаропрочность и термостойкость сплава.

Магний улучшает состояние границ зерен за счет связи легкоплавких вредных примесей в соединениях с высокой температурой плавления.

Пример осуществления.

Плавки предлагаемого состава выплавлялись в вакуумно-индукционной печи ОКБ-736 и разливались в круглые конусные слитки весом по 17 кг.

От слитков отрезалась головные и донные части и затем они ковались на прессе на сутунки толщиной 25 мм.

Сутунки нагревались в термической печи до температуры 1140oC - выдержка 2 часа и прокатывались на листы толщиной 1,5 мм.

Листы подвергались химико-термической обработке для образования в их структуре упрочняющих нитридов титана.

Химический состав приведен в табл. 1.

Из горячекатаных листов вырезались образцы, на которых проводились испытания на длительную прочность (ГОСТ 10145-81), выносливость (ГОСТ 25502) и термостойкость (методика ГП ГНЦ ВИАМ).

Результаты испытаний приведены в таблице 2.

Из данных таблицы 2 следует, что предложенный сплав имеет рабочую температуру на 200-300oC выше, чем у прототипа, и существенно превосходит последний по длительной прочности и термостойкости. Применение предлагаемого сплава позволит повысить рабочую температуру изделия до 1300oC, повысить пределы сточасовой длительной прочности в области температур 1000-1200oC в 2,6-4 раза, увеличить в 2 раза при испытании на термостойкость число циклов при испытании по режиму 1100o 200oC и повысить значение предела выносливости на 15%.

Изделия, выполненные из предлагаемого сплава, например жаровые трубы камер сгорания, стабилизаторы пламени, экраны и другие детали ГТД, могут работать до температуры 1300oC, обладают повышенным ресурсом работы (в 1,5 - 2 раза) и КПД (на 5-10%), более низким весом (на 8-12%). Все это позволит применять их на двигателях нового поколения.

Литература
1. Journal of Metals v. 9, p. 58.

2. ТУ 14-1-146-71.

3. Авторское свидетельство СССР N 1072501, МКИ C 22 C 19/00, Б.И. N 40, 1990 г.


Формула изобретения

1. Жаропрочный сплав на основе никеля, содержащий углерод, хром, кобальт, вольфрам, лантан, отличающийся тем, что дополнительно содержит молибден, титан, магний и азот при следующем соотношении компонентов, мас.%:
Углерод - 0,01 - 0,07
Хром - 20,0 - 30,0
Кобальт - 10,0 - 20,0
Вольфрам - 5,0 - 16,0
Молибден - 0,5 - 5,0
Лантан - 0,02 - 0,08
Магний - 0,02 - 0,10
Титан - 2 - 4
Азот - 0,5 - 2,0
Никель - Остальное
2. Изделие, выполненное из жаропрочного сплава на основе никеля, отличающееся тем, что сплав имеет следующий химический состав, мас.%:
Углерод - 0,01 - 0,07
Хром - 20,0 - 30,0
Кобальт - 10,0 - 20,0
Вольфрам - 5,0 - 16,0
Молибден - 0,5 - 5,0
Лантан - 0,02 - 0,08
Магний - 0,02 - 0,10
Титан - 2 - 4
Азот - 0,5 - 2,0
Никель - Остальное

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к составам жаропрочных сплавов на никелевой основе, получаемых прямым контактированием в изостатических условиях методами порошковой металлургии, предназначенных для тяжелонагруженных деталей, работающих при температурах 650-850oC

Изобретение относится к металлургии, в частности к составам жаропрочных высокоуглеродистых сплавов на никелевой основе аустенитного класса, и может быть использовано при изготовлении реакционных труб нефтегазоперерабатывающих установок с рабочими режимами при температуре 900 - 1160°С и давлении до 20 атм

Изобретение относится к металлургии, в частности к составам жаропрочных высокоуглеродистых сплавов на никелевой основе аустенитного класса, и может быть использовано при изготовлении реакционных труб нефтегазоперерабатывающих установок с рабочими режимами при температуре 1000 -1200°С и давлении до 46 атм
Изобретение относится к изделию для направления горячего окисляющего газа с подверженной воздействию газа поверхностью, образованной сплавом, который содержит следующие существенные весовые доли: 10 - 40% хрома, по выбору другие элементы, среди них алюминий 0 - 20%, кремний 0 - 10%, реактивные элементы из группы, включающей иттрий, скандий и редкоземельные элементы, а также остаток, в последующем называемый также основой, из одного элемента или нескольких элементов из группы, включающей железо, кобальт и никель

Изобретение относится к интерметаллическому сплаву на основе никель-алюминия, который содержит бинарную фазу NiAl

Изобретение относится к области композиции литейных жаропрочных сплавов, предназначенных для изготовления деталей ГТД, например рабочих и сопловых лопаток с равноосной и направленной структурой

Изобретение относится к металлургии сплавов, а именно к производству жаропрочных сплавов на основе никеля, используемых для изготовления методами направленной кристаллизации и монокристального литья деталей, например лопаток газовой турбины, работающих длительно при высоких температурах (1000-1100°С)

Изобретение относится к способам термообработки суперсплавов на основе никеля со следующим химическим составом, мас.%: Сr 11-13, Со 8-17, Мо 6-8, Ti 4-5, Al 4-5, Nb 1,5, Hf 1, С, В, Zr каждый 510-4, Ni - остальное до 100, или Сr 12-15, Co 14,5-15,5, Мо 2-4,5, W 4,5, Аl 2,5-4, Ti 4-6, Hf 0,5, С 110-4-310-4, В 110-4-510-4, Zr 210-4-710-4, Ni - остальное до 100

Изобретение относится к металлургии жаропрочных литейных сплавов на никелевой основе и изделиям, таким как литые сегменты труб камер сгорания (Т 1827oС) авиационных двигателей и другие детали авиационной техники, машиностроения и народного хозяйства

Изобретение относится к металлургии, в частности к жаропрочным сплавам на никелевой основе, предназначенным для изготовления сварных конструкций, работоспособных в интервале температур от -253 - 800oC в литом и деформированном состоянии

Изобретение относится к железоникелевому суперсплаву типа IN 706

Изобретение относится к металлургии, в частности к сплавам на основе никеля, предназначенным для изготовления крупногабаритных штампосварных и литосварных конструкций, работоспособных в интервале температур от -253 до 800oС

Изобретение относится к области металлургии, в частности к составам жаропрочных сплавов на основе никеля для монокристального литья и к изделиям, преимущественно рабочим и сопловым лопаткам газовых турбин, длительно работающих при температурах, превышающих 1000oС

Изобретение относится к металлургии сплавов, в частности к составам жаропрочных сплавов на основе никеля и изготовленных методом направленной кристаллизации теплонагруженных изделий из них

Изобретение относится к составу припоя и может использоваться в области машиностроения при изготовлении паяных деталей и узлов авиационных, корабельных и энергетических газотурбинных двигателей, а также при ремонте деталей ГТД, работающих в условиях высоких температур
Наверх