Способ очистки гидроксида лития-7

 

Изобретение относится к методам очистки гидроксида лития. Раствор гидроксида лития-7 подвергают непрерывной трехстадийной сорбционной очистке от вредных химических примесей и упаривают до соотношения твердого к жидкому 1: 1 для получения кристаллов требуемого фракционного состава. Сорбционную очистку раствора гидроксида лития-7 проводят с линейной скоростью 1,6 - 0,8 м/ч на первой стадии, 0,8-0,4 м/ч на второй стадии и 0,4-0,2 м/ч на третьей стадии. Способ обеспечивает очистку гидроксида лития-7 от вредных химических примесей, в том числе и от ртути, затем раствор может использоваться в качестве пассивирующей добавки в контурах тяжеловодных ядерных реакторов. 9 з.п. ф-лы, 7 табл.

Изобретение относится к технологии очистки гидроксида лития-7, используемого в ядерной энергетике.

При получении гидроксида лития-7 в результате технологического процесса разделения изотопов происходит загрязнение анионами и катионами тяжелых металлов, в том числе и ртутью, являющейся вредной примесью. В результате разделения изотопов получают гидроксид лития-7 с атомной долей лития-7 относительно суммы изотопов лития, равной 99,95%.

Содержание основных элементов растворенного гидроксида лития-7 после разделения изотопов лития приведены в таблице 1.

Известен способ очистки гидроксида лития, включающий растворение гидроксида, карбонизацию при 20-25oC полученного раствора до образования бикарбоната лития, отделение раствора от шлама, декарбонизацию раствора бикарбоната лития с получением осадка карбоната лития, его отделение и последующий перевод карбоната в гидроксид (Химия редких и рассеянных элементов М., Высшая школа, 1969 г., т. 2, с. 42).

Недостатком известного способа является сложность, многостадийность технологического процесса и невысокая степень очистки от анионов и катионов тяжелых металлов.

Наиболее близким к предлагаемому способу по технической сущности - прототип является способ очистки гидроксида лития путем растворения в дистиллированной воде при 100oC до содержания в растворе 160-167 г/л гидроксида лития. Полученный горячий раствор отделяют от шлама, выпаривают и охлаждают при температуре 40oC с одновременной кристаллизацией моногидрата гидроксида лития. Осадок полученного продукта отделяют от маточного раствора, который направляют для растворения исходного гидроксида лития (Литий, его химия и технология. Остроушко Ю.Н. и др. М., Атомиздат, 1960 г., с. 161-162).

Недостатком данного способа является невозможность очистки гидроксида лития-7 от ртути до требуемой концентрации и низкая степень очистки от вредных химических примесей.

Задача изобретения - повышение степени очистки гидроксида лития-7 от химических примесей, в том числе от ртути.

Поставленная задача решается благодаря тому, что в заявляемом способе очистки гидроксида лития-7, включающем растворение, упаривание, фильтрацию и сушку, растворенный гидроксид лития-7 подвергают непрерывной трехстадийной сорбционной очистке раствора гидроксида лития-7 с линейной скоростью от 1,6 до 0,8 м/ч на первой стадии, от 0,8 до 0,4 м/ч на второй стадии и от 0,4 до 0,2 м/ч на третьей стадии, а процесс упаривания кристаллов гидроксида лития-7 осуществляют до соотношения твердого к жидкому 1:1, при этом: - в качестве сорбента используют углерод-миниральный материал или активированный уголь; - процесс упаривания ведут при температуре 100-110oC; - процесс упаривания осуществляют в течение 45-75 часов; - в процессе упаривания поддерживают абсолютное остаточное давление пара в змеевике реактора на уровне 2 кгс/см2; - фильтрацию маточного раствора осуществляют с объемной скоростью 200-250 л/ч; - отделение маточного раствора от кристаллов гидроксида лития-7 ведут при вакуумировании подводящей линии до остаточного давления 0,05-0,15 кгс/см2; - после фильтрации осуществляют 3-5-кратный рецикл маточного раствора в реактор для упаривания; - фильтрация маточного раствора проводится до остаточной влажности кристаллов гидроксида лития-7 от 2 до 16% весовых; - сушку кристаллов гидроксида лития-7 проводят в двухступенчатой шнековой сушилке при температуре 85-95oC на первой ступени и с охлаждением на второй ступени при температуре 20-25oC.

Указанная совокупность признаков является новой и обладает изобретательским уровнем, так как раствор гидроксида лития-7 подвергают непрерывной трехстадийной сорбционной очистке от ртути и других вредных химических примесей, а процесс упарки кристаллов гидроксида лития-7 осуществляют до соотношения твердого к жидкому 1:1. Непрерывность процесса позволит избежать дополнительного загрязнения в процессе очистки гидроксида лития-7.

Линейная скорость от 1,6 м/ч до 0,8 м/ч (на первой стадии), от 0,8 м/ч до 0,4 м/ч (на второй стадии) и от 0,4 м/ч до 0,2 м/ч (на третьей стадии) в процессе сорбционной очистки технологического раствора гидроксида лития-7 была подобрана путем экспериментов после анализа содержания ртути и других химических примесей на выходе из колонок (см. табл. 2-6).

Повышение линейной скорости более 0,2 м/ч приведет к увеличению габаритных размеров и количества колонок, а снижение линейной скорости менее 1,6 м/ч резко снижает эффективность процесса очистки гидроксида лития-7.

Анализ таблиц 2-6 показывает, что трехстадийная сорбционная очистка при линейной скорости от 1,6 м/ч до 0,2 м/ч, очищает гидроксид лития-7 от ртути до требуемых параметров. Допустимая массовая доля ртути в гидроксиде лития-7 не должна превышать 0,000047%.

Процесс упаривания до соотношения твердого к жидкому 1:1 позволяет получать кристаллы гидроксида лития-7 заданного фракционного состава.

При повышении соотношения твердого к жидкому размер кристаллов гидроксида лития-7 превышает 1 мм, снижение соотношения твердого к жидкому не обеспечивает получение кристаллов гидроксида лития-7 требуемого фракционного состава. Размер кристаллов гидроксида лития-7 не должен превышать 1 мм.

Решаемая в настоящем изобретении задача по очистке гидроксида лития-7 от ртути и других вредных примесей весьма актуальна.

Гидроксид лития-7 используется в качестве пассивирующей добавки в контурах тяжеловодных ядерных реакторов, в которых наличие вредных примесей, таких как ртуть, недопустимо.

Пример осуществления способа.

Исходный гидроксид лития-7 до очистки по предлагаемому способу имеет следующие основные химические примеси (см. табл. 1).

После растворения в деионизированной воде гидроксид лития-7 с содержанием металла 20 г/л подается насосом в колонки, заполненные активированным углем марки КАД-йодный, при этом происходит сорбция ртути и частичная очистка от химических примесей. Возможно использование углерод-минеральных сорбентов, обладающих такими же сорбционными свойствами, что и активированный уголь. На первой стадии очистки раствор гидроксида лития-7 проходит под вакуумом (остаточное давление 0,1 кгс/см2) через три колонны диаметром 300 мм и высотой 1200 мм, после чего из сборной емкости насосом подается в напорную емкость. Из напорной емкости самотеком поступает на вторую стадию очистки через две колонны диаметром 400 мм и высотой 1400 мм. После этого насосом подается во вторую напорную емкость. Из второй напорной емкости самотеком поступает на третью стадию очистки через колонку диаметром 600 мм и высотой 1000 мм. В качестве материала колонок использовалась сталь 3.

Концентрацию ртути на выходе из колонок определяли методом атомно-абсорбционной спектроскопии. Результаты приведены в таблицах 2-6. Анализ результатов (таблица 7) показывает, что происходит очистка от ртути до массовой доли менее 0,00002%. После трехстадийной сорбционной очистки раствор гидроксида лития-7 сливается в накопительную емкость, из которой насосом подается в реактор упарки с мешалкой. Реактор выполнен из нержавеющей стали. В реакторе проводят упаривание гидроксида лития-7 при температуре 110oC в течение 65 часов до соотношения твердого к жидкому 1:1.

Поддерживание давления пара в змеевике реактора до 2 кгс/см2 в совокупности с доведением соотношения твердого к жидкому 1:1, позволяет получать кристаллы гидроксида лития-7 необходимого гранулометрического состава. Размер кристаллов не должен превышать 1 мм. После выдержки раствора гидроксида лития-7 при температуре 110oC в течение 65 часов проводят охлаждение реактора упарки до температуры 65oC. В качестве охладителя используют воду с температурой 20oC.

Охлажденные кристаллы гидроксида лития-7 в соотношении твердого к жидкому равным 1:1 вместе с маточным раствором подают на установку фильтрации, состоящую из нутчфильтра и вакуумной установки. Маточный раствор возвращают в реактор упарки. Для повышения производительности установку фильтрации вакуумируют до остаточного давления 0,1 кгс/см2. Объемная скорость фильтрации 220 л/ч обеспечивает остаточную влажность кристаллов гидроксида лития-7 от 2 до 16% весовых, что позволяет проводить процесс сушки кристаллов при минимальном времени.

Сушку кристаллов гидроксида лития-7 проводят в двухступенчатой шнековой сушилке при температуре 90oC с охлаждением на второй ступени при температуре 20oC.

Результаты анализов получаемого гидроксида лития-7 приведены в таблице 7.

Как видно из таблиц 1 и 7, после очистки по предлагаемому способу содержание химических примесей в гидроксиде лития-7 уменьшается в 1,2-100 раз.

Использование предлагаемого способа очистки гидроксида лития-7 позволяет очистить его от ртути до требуемой концентрации, повысить степень очистки от вредных химических примесей и получить гидроокись лития-7 с заданным фракционным составом.


Формула изобретения

1. Способ очистки гидроксида лития-7, включающий растворение, упаривание, фильтрацию и сушку, отличающийся тем, что растворенный гидроксид лития-7 подвергают непрерывной трехстадийной сорбционной очистке с линейной скоростью 1,6 - 0,8 м/ч на первой стадии, 0,8 - 0,4 м/ч на второй стадии и 0,4 - 0,2 м/ч на третьей стадии, а процесс упаривания осуществляют до соотношения твердого к жидкому 1 : 1.

2. Способ по п.1, отличающийся тем, что в качестве сорбента используют углерод-минеральный материал или активированный уголь.

3. Способ по п.1, отличающийся тем, что процесс упаривания ведут при 100 - 110oC.

4. Способ по любому из пп.1 и 3, отличающийся тем, что процесс упаривания осуществляют в течение 45 - 75 ч.

5. Способ по любому из пп.1, 3 и 4, отличающийся тем, что в процессе упаривания поддерживают абсолютное остаточное давление пара в змеевике реактора на уровне 2 кгс/см2.

6. Способ по любому из пп.1 - 5, отличающийся тем, что фильтрацию маточного раствора осуществляют с объемной скоростью 200 - 250 л/ч.

7. Способ по п.6, отличающийся тем, что отделение маточного раствора от кристаллов гидроксида лития-7 ведут при вакуумировании подводящей линии до остаточного давления 0,05 - 0,15 кгс/см2.

8. Способ по п. 6 или 7, отличающийся тем, что после фильтрации осуществляют 3 - 5 кратный рецикл маточного раствора в реактор для упаривания.

9. Способ по любому из пп.6 - 8, отличающийся тем, что фильтрация маточного раствора проводится до остаточной влажности кристаллов гидроксида лития-7 2 - 16 вес.%.

10. Способ по любому из пп.1 - 9, отличающийся тем, что сушку кристаллов гидроксида лития-7 проводят в двухступенчатой шнековой сушилке при 85 - 95oC на первой ступени и с охлаждением на второй ступени при 20 - 25oC.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5



 

Похожие патенты:

Изобретение относится к способу получения соединения на основе оксида лития и марганца со структурой шпинели и использования его во вторичных батареях

Изобретение относится к химической технологии получения соединений лития из природных рассолов, содержащих галогениды (хлориды и бромиды) лития, калия, кальция и магния, в частности к способу получения гидроксида лития высокой степени чистоты
Изобретение относится к способу получения литированной шпинели литиево-марганцевого оксида

Изобретение относится к гидрометаллургии щелочных металлов и может быть использовано при переработке отходов щелочных металлов, а именно безопасного перевода в раствор отходов металлического лития и других содержащих его продуктов с последующей утилизацией ценных компонентов
Изобретение относится к способам получения оксида лития

Изобретение относится к химической технологии получения соединений лития, в частности, к способу получения гидроксида лития или его солей с высокой степенью чистоты из природных рассолов

Изобретение относится к высокотемпературным технологиям получения сложных оксидных соединений и может быть использовано для изготовления электродных материалов химических источников тока

Изобретение относится к гидрометаллургии лития и может быть использовано для получения соединений лития из природных рассолов

Изобретение относится к области химической технологии получения неорганических соединений, а именно к способам получения моногидрата гидроксида лития высокой степени чистоты из материалов, содержащих карбонат лития, или технического карбоната

Изобретение относится к технологии получения дисперсных оксидных соединений, в частности литий марганец оксида LiхMn 2O4, литий никель оксида Liх NiO2, литий кобальт оксида LixCoO2 , применяемых преимущественно для изготовления катодных масс в ячейках литий-ионных аккумуляторов
Изобретение относится к технологии получения гидроксида лития, используемого в химической промышленности
Изобретение относится к методам очистки гидроксида лития

Изобретение относится к способу получения моногидрата гидроксида лития из карбоната лития

Изобретение относится к неорганическим литий-кобальт-оксидным материалам и способам их приготовления
Наверх