Способ определения величины краевого угла смачивания

 

Использование: в молекулярной физике, теплофизике, физической химии. Сущность изобретения: способ определения величины краевого угла смачивания, заключающийся в вычислении величины краевого угла смачивания по формуле где n - показатель преломления исследуемой жидкости; - разность действительной и кажущейся толщины слоя жидкости; а - капиллярная постоянная исследуемой жидкости. Технический результат - повышение точности и простоты измерений величины краевого угла смачивания. 2 ил.

Изобретение относится к области измерений физико- химических свойств жидкостей и расплавов и может быть использовано для оценки степени гидрофильности твердых поверхностей различными жидкими средами.

Известны методы определения величины краевого угла смачивания, например метод определения капиллярной постоянной и краевого угла смачивания жидкостей или расплавов путем погружения в жидкость или расплав смачиваемого этой жидкостью твердого тела (см. авторское свидетельство N (II) 434296 G 01 N 13 (02)), который является близким по технической сути и предлагаемому способу определения краевого угла , а также способ определения краевого угла смачивания как отношения радиуса капиллярной трубки к радиусу кривизны поверхности жидкости в трубке, описанный в "Физическом практикуме" под ред. проф. В.И. Ивереновой, ГИ ФМЛ, М., 1962 стр. 205-206.

Первый из указанных известных способов не обеспечивает необходимой точности измерения из-за большой погрешности измерения координаты экстремальной точки образующей Xэ (фиг. 1) поверхности жидкости или расплава при их капиллярном подъеме. По полученным, по крайней мере, для двух различных углов наклона граней значениям Xэ получают искомую величину краевого угла смачивания из выражения Как видим, выражение (1) является достаточно громоздким, поэтому непосредственное определение значения краевого угла смачивания представляет значительную трудность.

Во втором указанном способе определение величины краевого угла смачивания сводится к выражению где r - радиус сечения трубки (капилляра); R - радиус кривизны поверхности жидкостей в трубке.

В данном способе наибольшую трудность представляет определение с достаточно приемлемой точностью значения R, т.е. данный способ также не обеспечивает необходимой точности измерения краевого угла смачивания . Целью настоящего изобретения является повышение точности и надежности измерения величины краевого угла смачивания и упрощение процесса измерения.

Предлагаемый способ осуществляется следующим образом. На исследуемую поверхность наносится 60-70 капель жидкости, свободно распределяющейся на горизонтальной твердой поверхности. Затем измеряется толщина жидкой пленки с последующим определением краевого угла смачивания.

Как показывает вариационный анализ, толщина тонкого слоя жидкости в этом случае определяется выражением где - капиллярная постоянная, определяется по формуле ; - поверхностное натяжение;
g - ускорение свободного падения;
- плотность жидкости.

Толщина тонкого слоя жидкости (фиг. 2) определяется с помощью микроскопа по выражению

где - разность действительной и кажущейся толщины слоя жидкости, определяемая при помощи микрометрического винта микроскопа, n - показатель преломления исследуемой жидкости.

Так как величина зависит от величины краевого угла смачивания и определяется выражением то
Откуда
Предлагаемый способ определения величины краевого угла смачивания отличается от известных способов тем, что величину краевого угла определяют с использованием толщины жидкой пленки, которая определяется с достаточно высокой точностью оптическим методом, при этом увеличивается надежность и точность измерения, а также упрощается сам процесс измерения.


Формула изобретения

Способ определения величины краевого угла смачивания, заключающийся в использовании тонкого слоя жидкости на горизонтальной твердой поверхности, отличающийся нанесением на исследуемую поверхность 60 - 70 капель жидкости, свободно распределяющейся по исследуемой подложке, определением разности действительной и кажущейся толщины слоя жидкости оптическим методом (микроскопом) и вычислением величины краевого угла смачивания по формуле

где n - показатель преломления исследуемой жидкости;
- разность действительной и кажущейся толщины слоя жидкости;
a - капиллярная постоянная исследуемой жидкости.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к области исследований поверхностных явлений и предназначено для определения коэффициента поверхностного натяжения жидкости

Изобретение относится к измерительной технике, в частности к пневматическим устройствам для измерения поверхностного натяжения жидкостей, и может найти применение в таких отраслях промышленности, как химическая, лакокрасочная и пищевая промышленность

Изобретение относится к области исследования материалов, а именно к устройствам для испытания смазочных масел
Изобретение относится к области физики поверхностей

Изобретение относится к оптической контрольно-измерительной технике и может быть использовано для физико-химического анализа жидкостей и поверхности твердых тел, в частности для определения смачивающей способности жидкости, изучения процессов растекания и испарения жидкостей, для определения коэффициента поверхностного натяжения жидкостей

Изобретение относится к контрольно-измерительной технике, а именно к приборам (устройствам) для исследования физико-химических свойств жидкометаллических растворов и других материалов в атмосфере собственных насыщенных паров, и может найти широкое применение в физике и физической химии, металлургии легкоплавких металлов и сплавов и т.п

Изобретение относится к измерительной технике и может быть использовано для определения взаимного положения осей или элементов объектов в машиностроении и строительстве

Изобретение относится к области оптико-электронного приборостроения, а точнее к системам, в которых человек-оператор взаимодействует с техническими средствами, служащими для выдачи угловых координат линии визирования оператора, фиксируемой с помощью оптико-электронных устройств, сигналы с которых обеспечивают автоматическое наведение оружия, например, тепловой головки самонаведения на цель, независимо от вектора скорости самолета

Изобретение относится к контрольно-измерительной технике, а именно к дистанционному контролю положения объектов

Изобретение относится к контрольно-измерительной технике, а именно к устройствам для измерения геометрических параметров нагретых изделий, и может быть использовано при производстве проката, поковок и обечаек

Изобретение относится к приборостроению, в частности к оптико-электронным приборам, предназначенным для поиска теплоизлучающих объектов и их сопровождения в сочетании с дальномером, используемым для обеспечения целеуказания оружию и решения прицельных задач

Изобретение относится к волоконно-оптическим автоколебательным системам на основе микромеханического резонатора с частотным кодированием выходного сигнала и может быть использовано в системах измерения различных физических величин: линейных и угловых перемещений, силы, давления и др

Изобретение относится к измерительной технике и может быть использовано для высокоточных измерений малых угловых перемещении
Наверх