Способ неразрушающего контроля качества объекта и устройство для его осуществления

 

Изобретение относится к измерительной технике и может быть использовано для неразрушающего контроля качества материалов и изделий. Повышение достоверности и производительности результатов неразрушающего контроля достигается за счет того, что способ неразрушающего контроля качества включает сканирование поверхности контролируемого объекта, измерение величин сигналов излучения физического поля с каждой точки поверхности контролируемого объекта, выбор порогового значения величины сигнала излучения и обнаружение дефектов путем сравнения значения величины измеренного сигнала излучения каждой точки поверхности контролируемого объекта с пороговым значением величины сигнала излучения. Разбивают весь диапазон величин сигналов излучения по их значениям на К интервалов, регистрируют измеренные сигналы по принадлежности к соответствующим интервалам, определяют количество измеренных сигналов в каждом интервале, рассчитывают разность количества измеренных сигналов между последующим и предыдущим интервалами по всему диапазону значений величин сигналов. В качестве порогового значения величины сигнала излучения физического поля выбирают значение из интервала, для которого разность количества измеренных сигналов в данном и предыдущем интервалах меньше нуля, а разность количества измеренных сигналов в данном и последующем интервалах больше нуля. Устройство для неразрушающего контроля качества объекта включает последовательно соединенные блок измерения величины сигнала излучения физического поля, пороговый блок и регистратор. Оно снабжено сканирующим приспособлением, К дополнительными пороговыми блоками, К-1 блоками логического умножения - блоками И , К/2 блоками ключей, К-2 блоками вычитания, К-1 сумматорами и К-3 блоками сравнения. Сканирующее приспособление связано с блоком измерения величины сигнала, второй выход которого подключен к входу каждого дополнительного порогового блока, а первые выходы дополнительных пороговых блоков попарно подключены к входам блоков логического умножения, а вторые выходы четных дополнительных пороговых блоков - к первым входам блоков ключей, к вторым входам которых подключены выходы блоков сравнения. Выходы блоков ключей соединены с вторым входом основного порогового блока, а выходы блоков логического умножения подключены к соответствующим входам сумматоров, выходы которых попарно подключены к входам блоков вычитания, выходы которых попарно подключены к входам блоков сравнения. 2 с.п.ф-лы, 4 ил.

Изобретение относится к измерительной технике и может быть использовано в строительной, нефтяной, газовой, металлургической, химической и других отраслях промышленности для неразрушающего контроля качества материалов и изделий, обнаружения нарушений сплошности (дефектов), для определения геометрических, теплофизических и других характеристик дефектов.

Известен способ неразрушающего контроля качества объектов, включающий установку тепловизионной системы с обзором контролируемого объекта или его части, калибровку тепловизионной системы по эталонному значению температуры, бесконтактную регистрацию распределения температуры излучающей поверхности контролируемого объекта с последующим его анализом с учетом параметров, характеризующих внешние факторы и контролируемый объект, по результатам которого судят о качестве объекта (см. а.с. СССР N 1497543, кл. G 01 N 25/72,1987).

Данный способ осуществляется в известном из того же авторского свидетельства устройстве, включающем тепловизионную камеру, связанную с видеоконтрольным устройством, блок коммутации, блок памяти, два формирователя сигналов, блок команд и блок вычитания.

Недостатком данных способа и устройства является низкая точность измерений.

Наиболее близким к предлагаемому является способ неразрушающего контроля качества объектов, включающий сканирование поверхности контролируемого объекта, измерение величин сигналов излучения физического поля с каждой точки поверхности контролируемого объекта, выбор порогового значения величины сигнала излучения физического поля каждой точки поверхности контролируемого объекта и обнаружение дефектов путем сравнения значения величины измеренного сигнала излучения физического поля каждой точки поверхности контролируемого объекта с пороговым значением величины сигнала излучения физического поля (см. И.Н. Ермолов, Н.П. Алешин, А.И. Потапов. Неразрушающий контроль. Акустические методы контроля, книга 2, М.: Высшая школа, 1991, с. 92-95).

Однако данный способ имеет низкую достоверность обнаружения дефектов из-за неточного определения порогового значения величины сигнала излучения физического поля.

В этой же книге описано наиболее близкое к предлагаемому устройство для неразрушающего контроля качества объекта, включающее последовательно соединенные блок измерения величины сигнала излучения физического поля, пороговый блок и регистратор. Данное устройство не позволяет достоверно обнаружить дефект и имеет низкую производительность.

Предлагаемыми изобретениями решается задача повышения достоверности и производительности результатов неразрушающего контроля качества объекта.

Для получения такого технического результата в предлагаемом способе неразрушающего контроля качества объекта, включающем сканирование поверхности контролируемого объекта, измерение величин сигналов излучения физического поля с каждой точки поверхности контролируемого объекта, выбор порогового значения величины сигнала излучения физического поля и обнаружение дефектов путем сравнения значения величины измеренного сигнала излучения физического поля каждой точки поверхности контролируемого объекта с пороговым значением величины сигнала излучения физического поля, разбивают весь диапазон величин измеренных сигналов излучения физического поля по их значениям на K интервалов, регистрируют измеренные сигналы по принадлежности к соответствующим интервалам, определяют количество измеренных сигналов в каждом интервале, рассчитывают разность количества измеренных сигналов в последующем и предыдущем интервалах по всему диапазону значений величин измеренных сигналов, а в качестве порогового значения величины сигнала излучения физического поля выбирают значение из интервала, для которого разность количества измеренных сигналов в данном и предыдущем интервалах меньше нуля, а разность количества измеренных сигналов в данном и последующем интервалах больше нуля.

Отличительные признаки предлагаемого способа заключаются в выборе порогового значения величины сигнала излучения физического поля. Это позволяет повысить достоверность результатов контроля качества объектов за счет более точного определения порогового значения величины сигнала и определения вероятностных характеристик обнаруженных дефектов.

Для достижения названного технического результата предлагаемое устройство для неразрушающего контроля качества объекта, включающее последовательно соединенные блок измерения величины сигнала излучения физического поля, пороговый блок и регистратор, снабжено сканирующим приспособлением, К дополнительными пороговыми блоками, К-1 блоками логического умножения - блоками И, К/2 блоками ключей, К-2 блоками вычитания, К-1 сумматорами и К-3 блоками сравнения, при этом сканирующее приспособление связано с блоком измерения величины сигнала излучения физического поля, второй выход которого подключен соответственно к входу каждого дополнительного порогового блока, а первые выходы дополнительных пороговых блоков попарно подключены к входам блоков логического умножения - блоков И, а вторые выходы четных дополнительных пороговых блоков - к первым входам блоков ключей, к вторым входам которых подключены выходы блоков сравнения, причем выходы блоков ключей соединены с вторым входом основного порогового блока, а выходы блоков логического умножения - блоков И подключены к соответствующим входам сумматоров, выходы которых попарно подключены к входам блоков вычитания, выходы которых попарно подключены к входам блоков сравнения.

Описанная конструкция устройства позволяет достоверно обнаружить дефекты и повысить производительность результатов контроля качества.

Предлагаемые изобретения иллюстрируются чертежами, где изображены на: фиг. 1 - траектории сканирования; фиг. 2 - гистограмма сигналов излучения физического поля с разбивкой на К интервалов; фиг. 3 - распределение значений сигналов с поверхности контролируемого объекта; фиг. 4 - схема устройства для неразрушающего контроля качества объекта.

Предлагаемый способ осуществляется в следующей последовательности.

Осуществляют сканирование поверхности контролируемого объекта. Способ и траектории сканирования принципиального значения не имеют. Необходимо только, чтобы траектории сканирования представляли собой параллельные или подобные линии (фиг. 1).

В процессе сканирования осуществляется измерение величины U измеренных сигналов излучения физического поля каждой точки поверхности контролируемого объекта. Разбивают весь диапазон величин измеренных сигналов излучения физического поля по их значениям на К интервалов (фиг. 2).

С использованием значения величины U формируется гистограмма измеренных сигналов на K интервалов, т.е. регистрируют (классифицируют) измеренные сигналы по принадлежностям к соответствующим интервалам и определяют количество измеренных сигналов в каждом интервале. В гистограмму входят области как качественных, так и дефектных участков контролируемого объекта. На гистограмме эти области разделены провалом, вблизи которого и лежит пороговое значение величины сигнала излучения физического поля - сигнала, разделяющего совокупности, характеризующие дефектные и качественные участки контролируемого объекта. На фиг. 1 - P - количество сигналов, U - значение сигналов.

Далее рассчитывают разность количества измеренных сигналов в последующем и предыдущем интервалах по всему диапазону значений величины измеренных сигналов, т. е. (Pi+1 - Pi) и (Pi+2 - Pi+1). В качестве порогового значения величины сигнала излучения физического поля выбирают значение из интервала, для которого разность количества измеренных сигналов в данном и предыдущем интервалах меньше нуля (Pi+1 - Pi) < 0, а разность количества измеренных сигналов в данном и последующем интервалах больше нуля (Pi+2 - Pi+1) > 0. Такой подход к определению Un (пороговое значение величины сигнала излучения физического поля) позволяет не только найти точное значение этой величины, но и определить вероятностные характеристики обнаруживаемых дефектов.

Обнаружение дефектов осуществляют путем сравнения значения величины измеренного сигнала излучения физического поля каждой точки поверхности контролируемого объекта с пороговым значением величины сигнала излучения физического поля.

В качестве примера рассмотрим процесс и результаты неразрушающего контроля качества многослойного объекта из полимерного материала.

При неразрушающем контроле по способу, изложенному в прототипе (с настройкой по одному эталонному дефекту), пороговое значение сигнала Unl=16 Дб.

Рассмотрим результаты контроля по предлагаемому способу.

Распределение значений сигналов с поверхности контролируемого объекта приведено на фиг. 3.

Применяя предложенный способ неразрушающего контроля качества объекта получаем значение порогового сигнала Un = 23 Дб.

Разделим совокупность сигналов на две области - дефектную и качественную и рассчитаем вероятность обнаружения дефектов по способу, принятому в качестве прототипа, и предлагаемому способу. Примем распределение сигналов на дефектных и качественных областях нормальным.

Произведя расчеты, получим: - вероятность обнаружения дефектов по способу, принятому в качестве прототипа, равна P1 = 0,74, - вероятность обнаружения дефектов по предлагаемому способу P2 = 0,98.

Таким образом, предлагаемый способ позволяет повысить вероятность обнаружения дефектов в 1,32 раза, что является крайне важным при автоматизированном неразрушающем контроле ответственных объектов.

Устройство для неразрушающего контроля качества объекта, как изображено на фиг. 4, содержит контролируемый объект 1, эталонный дефект 2 (например, нарушение сплошности), последовательно соединенные блок измерения величины сигнала излучения физического поля 3, основной пороговый блок 4 и регистратор 5, K дополнительных пороговых блоков 6, К-1 блоков логического умножения 7 - блоков И, К/2 блоков ключей 8, К-2 блоков вычитания 9, К-1 сумматоров 10, К-3 блоков сравнения 11 и сканирующее приспособление 12. Сканирующее приспособление 12 связано с блоком 3 измерения величины сигнала излучения физического поля, второй выход которого подключен соответственно к входу каждого дополнительного порогового блока 6, а первые выходы блоков 6 попарно подключены к входам блоков 7 логического умножения - блоков И, а вторые выходы четных дополнительных пороговых блоков 6 - к первым входам блоков ключей 8, к вторым входам которых подключены выходы блоков 11 сравнения, причем выходы блоков 8 ключей соединены с вторым входом основного порогового блока 4, а выходы блоков 7 логического умножения - блоков И подключены к соответствующим входам сумматоров 10, выходы которых попарно подключены к входам блоков 9 вычитания, выходы которых попарно подключены к входам блоков 11 сравнения.

Предлагаемое устройство для неразрушающего контроля качества объекта работает следующим образом.

Блок 3 измерения величины сигнала излучения физического поля посредством сканирующего приспособления 12 осуществляет сканирование поверхности контролируемого объекта 1, включающего эталонные дефекты 2. В процессе сканирования блоком 3 производится измерение величины излучения физического поля U на поверхности контролируемого объекта. Значение U несет информацию о внутренней структуре контролируемого объекта, в т.ч. о наличии в нем нарушений сплошности - дефектов. В качестве физического поля может быть ультразвуковое поле, тепловое - температурное и т.п. Сигнал U поступает одновременно на первый вход основного порогового блока 4, где осуществляется, собственно, обнаружение дефектов посредством сравнения текущего значения U с пороговым, которое необходимо определить и ввести в блок 4, и на входы "K" дополнительных пороговых блоков 6. Блоки 6 осуществляют сравнение сигнала U попарно с набором пороговых сигналов Un.

Пороговые значения сигналов определяются следующим образом: Таким образом, входные сигналы U разбиваются на "K" интервалов (поддиапазонов):
Un1 < U < Un2 - 1-й интервал,
Un2 < U < Un3 - 2-й интервал,
Un3 < U < Un4 - 3-й интервал и т.д.

Далее сигналы с выходов блоков 6 поступают на входы блоков 7 логического умножения - блоков И. С выходов блоков 7 сигналы поступают на входы соответствующих сумматоров 10, где производится суммирование количества входных сигналов и определение количества сигналов (pi), соответствующих каждому интервалу.

Одновременно сигналы U с четных блоков 6 поступают на соответствующие входы блоков 8 ключей. С выходов сумматоров 10 сигналы, соответствующие (pi), поступают на соответствующие входы блоков 9 вычитания. В этих блоках производится вычитание сигналов (pi), соответствующих соседним интервалам, т. е. формируется сигнал pi = pi+1-pi. Далее сигналы pi и pi+1 с последовательных вычитающих блоков i и i+1 поступают в соответствующие блоки сравнения 11, где эти сигналы сравниваются и формируется инициативный сигнал следующим образом:

Инициативный сигнал Uин поступает на вход соответствующего блока 8 ключа, который "открывается" и передает соответствующий пороговый сигнал Uni с соответствующего четного блока 6 на блок 4.

В блоке 4 производится обнаружение дефектов путем сравнения текущего значения сигнала с пороговым.

Далее сигнал о наличии дефекта поступает на регистратор 5.

Предложенное устройство для неразрушающего контроля качества объекта позволяет достоверно обнаружить дефекты и повысить производительность контроля качества.


Формула изобретения

1. Способ неразрушающего контроля качества объекта, включающий сканирование поверхности контролируемого объекта, измерение величин сигналов излучения физического поля с каждой точки поверхности контролируемою объекта, выбор порогового значения величины сигнала излучения физического поля и обнаружение дефектов путем сравнения значения величины измеренного сигнала излучения физического поля каждой точки поверхности контролируемого объекта с пороговым значением величины сигнала излучения физического поля, отличающийся тем, что разбивают весь диапазон величин сигналов излучения физического поля по их значениям на К интервалов, регистрируют измеренные сигналы по принадлежности к соответствующим интервалам, определяют количество измеренных сигналов в каждом интервале, рассчитывают разность количества измеренных сигналов в последующем и предыдущем интервалах по всему диапазону значений величин измеренных сигналов, а в качестве порогового значения величины сигнала излучения физического поля выбирают значение из интервала, для которого разность количества измеренных сигналов в данном и предыдущем интервалах меньше нуля, а разность количества измеренных сигналов в данном и последующем интервалах больше нуля.

2. Устройство для неразрушающего контроля качества объекта, включающее последовательно соединенные блок измерения величины сигнала излучения физического поля, пороговый блок и регистратор, отличающееся тем, что оно снабжено сканирующим приспособлением, К дополнительными пороговыми блоками, К-1 блоками логического умножения - блоками И, К/2 блоками ключей, К-2 блоками вычитания, К-1 сумматорами и К-3 блоками сравнения, при этом сканирующее приспособление связано с блоком измерения величины сигнала излучения физического поля, второй выход которого подключен соответственно к входу каждого дополнительного порогового блока, а первые выходы дополнительных пороговых блоков попарно подключены к входам блоков логического умножения - блоков И а вторые выходы четных дополнительных пороговых блоков - к первым входам блоков ключей, к вторым входам которых подключены выходы блоков сравнения, причем выходы блоков ключей соединены с вторым входом основного порогового блока, а выходы блоков логического умножения - блоков И подключены к соответствующим входам сумматоров, выходы которых попарно подключены к входам блоков вычитания, выходы которых попарно подключены к входам блоков сравнения.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4



 

Похожие патенты:

Изобретение относится к неразрушающему контролю и может быть использовано для оценки повреждений с помощью упругих колебаний одноосных конструкций

Изобретение относится к области неразрушающих испытаний материалов и изделий ультразвуковым методом и может быть использовано для контроля основного металла и сварных швов

Изобретение относится к измерительной технике и может быть использовано для определения физико-механических параметров жидких, твердых и газообразных сред, решения задач медицинской и технической диагностики

Изобретение относится к неразрушающему контролю материалов изделий по сигналам акустической эмиссии и может быть использовано для диагностики технического состояния трубопроводов и резервуаров нефти и нефтепродуктов
Изобретение относится к анализу материалов путем определения их физических свойств, определению превышения разрушающего напряжения над уровнем действующих механических напряжений и может найти применение для выявления в материале дефектов - концентраторов напряжения и т.д

Изобретение относится к анализу материалов путем определения их физических свойств, к определению механического состояния нагруженных материалов, их долговечности и может использоваться для долгосрочного определения времени до возникновения предразрывного состояния в результате делокализованного накопления трещин в деталях машин

Изобретение относится к области неразрушающего контроля материалов и изделий и может быть использовано для неразрушающего контроля композитных и многослойных изделий

Изобретение относится к неразрушающему контролю качества сварных соединений и может быть использовано для контроля качества изготовления тепловыделяющих элементов для ядерных реакторов

Изобретение относится к неразрушающему контролю и может быть использовано для обнаружения дефектов элементов конструкции балочного типа с помощью упругих колебаний

Изобретение относится к области измерительной техники

Изобретение относится к технике контроля и технической диагностики напряженно-деформированного состояния ракетного двигателя твердого топлива (РДТТ)

Изобретение относится к измерительной технике и может быть использовано в строительной промышленности для диагностики и контроля качества строительных конструкций, определения численных значений теплотехнических характеристик наружных ограждающих конструкций и для анализа тепловых потерь жилых и промышленных зданий с целью оптимального перераспределения энергоресурсов, предназначенных для их отопления, в нефтяной и газовой промышленности для контроля технического состояния трубопроводов и труб и для определения и локализации мест утечек нефти или газа, в металлургической, химической и др

Изобретение относится к технике контроля и технической диагностики напряженно-деформируемого состояния

Изобретение относится к технологии контроля шнурообразных изделий, в частности таких, как детонирующие и огнепроводные шнуры, содержащие сыпучие вещества, заключенные в оболочку из предохранительного материала

Изобретение относится к неразрушающему контролю качества поверхности непрозрачных твердых материалов и может быть использовано при производстве изделий электронной техники

Изобретение относится к неразрушающему контролю и может быть использовано для дефектоскопии металлических и неметаллических изделий

Изобретение относится к бесконтактным способам контроля дефектов и теплофизических параметров материалов

Изобретение относится к области приборов для неразрушающего контроля
Наверх