Способ промера глубины спуска скважинного прибора при каротажных исследованиях в скважинах

 

Изобретение относится к геофизическим исследованиям скважин. Задачей изобретения является расширение функциональных возможностей путем повышения точности определения глубины спуска. В способе предварительно разбивают грузонесущий каротажный трос (ГКТ) на одинаковые отрезки. Для обозначения отрезков наносят на броню ГКТ магнитные метки (ММ), распределяя их по длине размечаемого отрезка. Указанные ММ представляют собой последовательность участков разной степени намагниченности брони ГКТ. Закрепляют скважинный прибор на конце ГКТ и спускают его в скважину. Обнаруживают ММ на движущемся ГКТ путем их считывания считывающим устройством. При обнаружении ММ на ГКТ регистрируют границы отрезков на записи каротажной кривой. Определяют количество обнаруженных ММ и рассчитывают глубину спуска скважинного прибора по предложенному математическому выражению. 2 ил.

Изобретение относится к области геофизических исследований скважин и может быть использовано для построения устройств промера глубины спуска скважинного прибора при проведении каротажных исследований в нефтяных и газовых скважинах.

Известен способ промера глубины спуска скважинного прибора при проведении каротажных исследований в скважинах [1], включающий предварительное разбиение грузонесущего каротажного троса на одинаковые отрезки и обозначение упомянутых отрезков магнитными метками, путем нанесения на броню грузонесущего каротажного троса на границах указанных отрезков магнитных меток в виде одиночных магнитных импульсов, запоминание сигнала, соответствующего длине отрезка L, закрепление на конце грузонесущего каротажного троса скважинного прибора на расстоянии Lн, от границы первого отрезка, запоминание сигнала, соответствующего расстоянию Lн, спуск скважинного прибора в скважину, обнаружение магнитных меток на движущемся грузонесущем каротажном тросе путем их считывания считывающим устройством, регистрацию границ упомянутых отрезков на записи каротажной кривой при обнаружении магнитных меток на грузонесущем каротажном тросе, определение количества обнаруженных магнитных меток n и расчет глубины спуска скважинного прибора Lпр по формуле Lпр = Lн + L(n-1).(1) Недостатком прототипа-способа являются ограниченные функциональные возможности, связанные с недостаточной точностью определения глубины спуска скважинного прибора Lпр и недостаточной точностью регистрации на записи каротажной кривой границ упомянутых отрезков L.

Указанный недостаток связан с недостаточной помехозащищенностью обнаружения магнитных меток, в качестве которых в прототипе-способе используются одиночные магнитные импульсы, представляющие собой намагниченные участки брони грузонесущего каротажного троса.

Действительно, если предположить, что грузонесущий каротажный трос движется относительно считывающего устройства со скоростью V, обработка считываемых магнитных меток в составе считывающего устройства осуществляется согласованным фильтром, который в классе линейных устройств обеспечивает наибольшее отношение сигнал/шум на входе решающей схемы [3], и что сигналы S(t), соответствующие считываемым меткам - одиночным магнитным импульсам, являются синусоидальными с амплитудой A, частотой и длительностью T [2].

где T= lм/V, а lм - протяженность намагниченных участков брони троса - протяженность магнитных импульсов (меток глубины); также предположить, что на вход считывающего устройства действует аддитивная гауссова помеха (t) типа "белого" шума с нулевым математическим ожиданием и спектральной плотностью 220 [3].

С учетом этого на вход согласованного фильтра действует суммарный сигнал x(t) x(t) = S(t)+(t). (3) Выходной сигнал Sвых(t) фильтра, согласованного с сигналом S(t), имеет вид: Sвых(t)=cB(t-T)+N0(t),(4) где с - некоторая постоянная; B(t - Т) - функция корреляции сигнала S(t);
N0(t) - отклик фильтра на поступающую на его вход помеху (t).

Сигнал S(t) считается обнаруженным в момент времени t0, если выходной сигнал фильтра достигает некоторого порога Uпор. Величина порога определяется критерием приема (среднего риска, минимума вероятности пропуска цели, минимума вероятности ложного обнаружения...) [3]. Без потери общности можно использовать критерий идеального наблюдателя, для которого Uпор = сB(0)/2.

Магнитная метка считается обнаруженной, если выполняется равенство

Из-за действия помех при считывании магнитных меток могут возникать ошибки двух видов:
1. При считывании метки вследствие действия помехи выходное напряжение согласованного фильтра Sвых(t) не достигает Uпор = сB(0)/2, условие (5) не выполняется, магнитная метка не обнаруживается, ситуация "пропуска цели" [3] ;
2. При отсутствии магнитной метки напряжение помехи превышает значение порога Uпор = с B(0)/2, фиксируется ложная метка, ситуация "ложной тревоги" [3].

В случаях возникновения ситуаций "пропуска цели" и "ложной тревоги" происходит неверное определение границ упомянутых отрезков L, неверный подсчет количества n сигналов, соответствующих магнитным меткам, и неверный расчет по формуле (1) глубины спуска скважинного прибора Lпр. При этом отклонения рассчитанной глубины Lпр скважинного прибора от истинного кратны длине L упомянутых отрезков. Согласно [1] при каротаже нефтяных и газовых скважин длина L упомянутых отрезков при разметке грузонесущего каротажного троса выбирается из ряда: 10, 20 или 40 м. Поэтому при пропуске или ложном обнаружении магнитной метки погрешность промера глубины может достигать десятков метров. В то время как требуемая точность промера глубины спуска скважинного прибора в скважину оценивается величиной 0,01 м [1]. Для устранения этого противоречия предпринимают дополнительные меры по повышению точности промера глубины спуска скважинного прибора, основанные на увеличении объема проводимых полевых измерений, что связано с большими затратами времени и средств.

Количественно частота появления указанных ситуаций "пропуска цели" и "ложной тревоги" оценивается средней вероятностью ошибки Pош, которая применительно к рассматриваемому случаю равна [3]

где Ф(t) - табулированная функция, интеграл вероятности [3];
h0 - отношение сигнал/шум на входе согласованного фильтра; h20 = Ps/220;
Ps - энергия сигнала S(t).

Таким образом, для снижения вероятности ошибки Pош при считывании магнитных меток необходимо увеличивать энергию сигнала Ps, что эквивалентно увеличению интенсивности намагничивания брони грузонесущего каротажного троса в месте нанесения магнитной метки при проведении разметки последнего.

Однако увеличение интенсивности намагничивания в месте нанесения магнитных меток имеет предел, связанный с тем, что броня грузонесущего каротажного троса изготовляется из материала, обладающего ферромагнитными свойствами [1]. А у ферромагнетиков, как известно, кривая намагниченности имеет участки насыщения, что и определяет практический предел намагничивания брони троса [4].

Действие помех также приводит к погрешности момента регистрации границ упомянутых отрезков L на записи каротажной кривой при обнаружении метки на каротажном тросе.

Как уже отмечалось, магнитная метка считается обнаруженной в момент времени t=t0, если выполняется условие (5). Принимая во внимание, что значение корреляционной функции B(0) сигнала S(t) соответствует его энергии Ps, можно записать

Решая равенство относительно t0, можно показать, что дисперсия 2 (t0) момента обнаружения магнитной метки определяется дисперсией помехи 2 [N(t)] , измеренной в момент времени t0. Откуда следует [3], что для случая аддитивной гауссовой помехи дисперсия момента обнаружения сигнала равна

Погрешность момента обнаружения магнитной метки оценивается величиной

что приводит к погрешности регистрации границ упомянутых отрезков на записи каротажной кривой, равной
Таким образом, для уменьшения погрешности регистрации границ упомянутых отрезков на записи каротажной кривой (L) необходимо или повышать энергию сигнала Ps, что, как указывалось выше, имеет предел, либо уменьшать протяженность магнитных импульсов lм, что также является проблематичным, так как требует расширения диапазона частот, используемых для представления магнитных меток при разметке грузонесущего каротажного троса.

Целью заявляемого способа является расширение функциональных возможностей путем повышения точности определения глубины спуска скважинного прибора Lпр и повышения точности регистрации границ упомянутых отрезков на записи каротажной кривой.

Поставленная цель достигается тем, что в способе промера глубины спуска скважинного прибора при проведении каротажных исследований в скважинах, включающем предварительное разбиение грузонесущего каротажного троса на одинаковые отрезки и нанесение на броню грузонесущего каротажного троса магнитных меток, запоминание сигнала, соответствующего длине L отрезка, закрепление скважинного прибора на конце грузонесущего каротажного троса на расстоянии Lн, от границы первого отрезка, запоминание сигнала, соответствующего расстоянию Lн, спуск скважинного прибора в скважину, обнаружение магнитных меток на движущемся грузонесущем каротажном тросе путем их считывания считывающим устройством, регистрацию границ упомянутых отрезков на записи каротажной кривой при обнаружении магнитных меток на грузонесущем каротажном тросе, определение количества обнаруженных магнитных меток и расчет глубины спуска скважинного прибора Lпр, обозначают упомянутые отрезки длиной L путем нанесения по их длине магнитных меток, представляющих собой последовательность участков разной степени намагниченности брони грузонесущего каротажного троса, а глубину спуска скважинного прибора рассчитывают по формуле
Lпр = Lн + n L,(11)
где n - количество сигналов, соответствующих обнаруженным магнитным меткам.

В результате использования для обозначения упомянутых отрезков магнитных меток, представляющих собой распределенные по длине отрезков последовательности участков разной степени намагниченности брони грузонесущего каротажного троса, происходит эквивалентное увеличение энергии сигнала в В раз по сравнению с энергией простых импульсных сигналов, используемых для магнитной разметки в прототипе; здесь B - база сигнала, равная произведению полосы частот сигнала 2 f на его длительность Ts, много больше 1.

В = 2 fTs >> 1.(12)
У простых сигналов, типа тех, что используются в прототипе для магнитной разметки границ отрезков грузонесущего каротажного троса, база В = 2 fT 1.

Увеличение эквивалентной энергии магнитных меток обеспечивает большую помехозащищенность их считывания. Это увеличение помехозащищенности считывания магнитных меток учитывается заменой h0 в формулах (6), (9) и (10) на Данный энергетический выигрыш получается за счет того, что в заявляемом способе магнитные метки, соответствующие составным сигналам (будем называть их составными метками), распределены по длине указанных отрезков и в пределе могут занимать их полностью; в прототипе импульсы магнитных меток ставятся только на границах отрезков.

Действительно, пусть LB - протяженность составной магнитной метки. Предположим, что составные магнитные метки представляют последовательность магнитных импульсов, разделенных свободными от намагничивания интервалами, что протяженности магнитных импульсов и интервалов между ними кратны протяженности магнитных импульсов lм, используемых в прототипе в качестве магнитных меток. При этом база соответствующей составной магнитной метки равна

Средняя вероятность ошибки при считывании составных магнитных меток PошВ равна

Обычно протяженность магнитных импульсов, используемых для магнитной разметки грузонесущего каротажного троса способе - прототипе, lм измеряется величиной порядка 0,1 м; если считать протяженность составной магнитной метки в заявляемом способе, равной длине L указанного отрезка, LB= L = 10 м, то выигрыш в отношении сигнал/шум вследствие использования составных магнитных меток достигает величины Такое увеличение отношения сигнал/шум обеспечивает значительное снижение средней вероятности ошибки считывания составных меток по сравнению с соответствующей средней вероятностью ошибки в способе - прототипе. Соответственно в = 10 уменьшается погрешность (L) регистрации границ отрезков на записи каротажной кривой при обнаружении меток глубины на каротажном тросе.

Работа заявляемого способа поясняется схемой промера глубины спуска скважинного прибора, приведенной на фиг. 1, и примером конкретного выполнения устройства определения глубины спуска скважинного прибора, представленной на фиг. 2.

Скважинный прибор 1, закрепленный на конце предварительно размеченного грузонесущего каротажного троса 2, на расстоянии Lн, от границы 3 первого отрезка L, спускается в скважину. Определение глубины спуска скважинного прибора в скважину Lпр осуществляется устройством определения глубины спуска скважинного прибора, состоящим из считывающего устройства 4, включающего в себя последовательно соединенные индукционную катушку 5, блок согласованной фильтрации 6, решающую схему 7, а также из счетчика 8, вычислителя 9 и блока памяти 10. Выход решающей схемы 7 служит выходом считывающего устройства 4. Выход считывающего устройства 4 служит первым выходом 11 устройства определения глубины спуска скважинного прибора, а также подключен к соединенным вместе входу счетчика 8 и первому входу вычислителя 9. Второй вход вычислителя 9 подключен к выходу счетчика 8, третий вход вычислителя 9 соединен с выходом блока памяти 10. Выход вычислителя 9 служит вторым выходом 12 устройства определения глубины спуска скважинного прибора.

Работа способа заключается в последовательной реализации следующих операций.

1. Предварительно разбивают грузонесущий каротажный трос на отрезки одинаковой длины L и обозначают их магнитными метками, представляющими собой на длине каждого из упомянутых отрезков последовательность участков разной степени намагниченности брони грузонесущего каротажного троса.

2. Запоминают сигналы, соответствующие длине отрезков L. Сигналы, соответствующие длине отрезков L, запоминаются в блоке памяти 6.

3. Закрепляют на конце грузонесущего каротажного троса скважинный прибор на расстоянии Lн, от границы первого отрезка, запоминают сигнал, соответствующий расстоянию Lн. Информация о сигнале, соответствующем расстоянию Lн, запоминается в блоке памяти 6.

4. Спускают скважинный прибор в скважину, обнаруживают магнитные метки на движущемся грузонесущем каротажном тросе путем их считывания считывающим устройством.

При движении предварительно размеченного составными магнитными метками грузонесущего каротажного троса 2 около считывающего устройства 4, состоящего из последовательно соединенных индукционной катушки 5, согласованного фильтра 6, решающей схемы 7, на выходе индукционной катушки 5 в соответствии с законом намагниченности брони грузонесущего каротажного троса 2 формируется соответствующий сигнал, который подается в согласованный фильтр 6. Выходной сигнал согласованного фильтра 6 поступает в решающую схему 7, где осуществляется его сравнение с порогом. В момент завершения прохождения составной магнитной метки около считывающего устройства 4 на выходе согласованного фильтра 6 все частотные составляющие сигнала (составной магнитной метки) складываются в фазе. Напряжение выходного сигнала согласованного фильтра в данный момент времени превышает порог решающей схемы 7. На выходе решающей схемы 7 формируется соответствующий сигнал, который служит признаком обнаружения составной магнитной метки.

5. Регистрируют границы упомянутых отрезков на записи каротажной, определяют количества обнаруженных магнитных меток и рассчитывают глубину спуска скважинного прибора Lпр. Выполнение данных операций осуществляется по выходному сигналу считывающего устройства 4.

Сигнал с выхода решающей схемы 7 поступает на соединенные вместе вход счетчика 8, первый вход вычислителя 9 и первый выход 11 устройства определения глубины спуска скважинного прибора. Сигнал с первого выхода 11 устройства определения глубины спуска скважинного прибора подается в регистратор (на схеме не показан) для регистрации границ отрезков на записи каротажной кривой. В счетчике 8 осуществляется счет количество n обнаруженных считывающим устройством 4 составных магнитных меток, нанесенных на броню грузонесущего каротажного троса 2, продвигающегося мимо считывающего устройства 4. Данные о количестве n обнаруженных считывающим устройством 4 составных магнитных метках с выхода счетчика 8 поступают на второй вход вычислителя 9, на третий вход которого из устройства памяти 10 подаются сигналы, соответствующие упомянутым величинам длины отрезков L, расстояния Lн. В вычислителе 9 осуществляется вычисление глубины спуска скважинного прибора Lпр по формуле Lпр = Lн + n L. Результат вычисления глубины спуска скважинного прибора пр с выхода вычислителя 9 выдается на второй выход 12 устройства определения глубины спуска скважинного прибора.

Источники информации
1. Техническая инструкция по проведению геофизических исследований скважин.- М.: Недра, 1985.

2. Заворотько Ю. М. Геофизические методы исследования скважин. Учебник для техникумов.- М.: Недра, 1983.

3. Возенкрафт Дж., Джекобс И. Теоретические основы техники связи. Пер. с англ. под ред. Р.Л. Добрушина.- М.: Мир, 1969.

4. Справочник по ядерной физике. Пер. с англ. Под ред. акад. Л.А. Арцимовича.- М.: Физматгиз, 1963.


Формула изобретения

Способ промера глубины спуска скважинного прибора при каротажных исследованиях в скважинах, включающий предварительное разбиение грузонесущего каротажного троса на одинаковые отрезки и нанесение на броню грузонесущего каротажного троса магнитных меток, запоминание сигнала, соответствующего длине L отрезка, закрепление скважинного прибора на конце грузонесущего каротажного троса на расстоянии Lн от границы первого отрезка, запоминание сигнала, соответствующего расстоянию Lн, спуск скважинного прибора в скважину, обнаружение магнитных меток на движущемся грузонесущем каротажном тросе путем их считывания считывающим устройством, регистрацию границ упомянутых отрезков на записи каротажной кривой при обнаружении магнитных меток на грузонесущем каротажном тросе, определение количества обнаруженных магнитных меток и расчет глубины спуска скважинного прибора Lпр, отличающийся тем, что обозначают упомянутые отрезки длиной L путем нанесения по их длине магнитных меток, представляющих собой последовательность участков разной степени намагниченности брони грузонесущего каротажного троса, а глубину спуска скважинного прибора рассчитывают по формуле Lпр = Lн + nL, где n - количество сигналов, соответствующих обнаруженным магнитным меткам.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к геофизическим исследованиям скважин

Изобретение относится к геофизическим исследованиям скважин

Изобретение относится к нефтяной промышленности, а именно к вопросам регулирования разработки нефтяных залежей

Изобретение относится к нефтяной и газовой промышленности

Изобретение относится к устройствам для измерения уровня жидкости в скважине

Изобретение относится к средствам контроля технологического процесса ремонта скважины

Изобретение относится к области нефтедобычи, а именно к области контроля движения водонефтяного контакта по пласту, и может быть использовано при контроле эксплуатации нефтяного месторождения

Изобретение относится к устройствам для индикации уровня жидкости в скважине и может быть использовано, в частности в нефтяной и газовой промышленности при замерах уровней пластовых и техногенных жидкостей в буровых скважинах

Изобретение относится к области нефтедобычи и может быть использовано для контроля длины колонны длинномерных тел, в частности насосно-компрессорных труб, спускаемых в нефтяную скважину при проведении в ней подземного ремонта

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для определения длины колонны труб при спускоподъемных операциях

Изобретение относится к области бурения и эксплуатации скважин и может быть использовано при измерении длины колонны труб при спускоподъемных операциях

Изобретение относится к нефтегазодобывающей промышленности и предназначено для контроля глубины спуска колонны труб в скважину в нефтегазодобыче, бурении и капитальном ремонте скважин

Изобретение относится к области контроля параметров скважин и может быть использовано для дистанционного измерения динамического уровня жидкости в газлифтных скважинах

Изобретение относится к области исследования скважин и может быть использовано при определении уровня жидкости в эксплуатационной скважине

Изобретение относится к технике для геофизических исследований скважин и позволяет повысить надежность работы устройства

Изобретение относится к области исследования скважин и может быть использовано для контроля за уровнем жидкости в газлифтных скважинах
Изобретение относится к области исследования и контроля скважин и может быть использовано для измерения динамического уровня склонной к пенообразованию жидкости
Наверх