Гравитационный вариометр

 

Использование: при создании таких средств измерения градиентов гравитационного поля, как гравитационные вариометры и градиентометры. Сущность: конструкция включает вывешенное в герметичном корпусе коромысло с грузами, датчик угловых перемещений коромысла относительно корпуса, подключенный ко входу электронного блока следящей системы, электростатические датчики момента, роторные электроды которых симметрично размещены на коромысле. Взаимодействующая с каждым из них пара одинаковых статорных электродов, подключенных к выходу электронного блока, закреплена на корпусе. Электроды на коромысле и корпусе выполнены в виде сегментов цилиндров. Каждый роторный электрод содержит пару одинаковых сегментов цилиндров, размещенных на коромысле так, что центральный угол между полуплоскостями, проходящими через оси цилиндров, отличается от центрального угла между полуплоскостями, проходящими через оси цилиндров статора, на расчетную величину, определяемую расстоянием между осью подвеса коромысла и осью статора, радиусом цилиндров ротора и статора и зазором между встречно ориентированными цилиндрическими поверхностями сегментов ротора и статора. При этом выход электронного блока имеет два канала, каждый из которых подключен к сегментам цилиндров статора, оси которых лежат в одной плоскости с осью симметрии коромысла. Гравитационный вариометр содержит две пары датчиков момента с взаимно перпендикулярным расположением плоскостей симметрии и параллельным подключением к выходу электронного блока. Технический результат: повышение точности и расширение измерительного диапазона. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области точного приборостроения и может быть использовано при создании таких средств измерения градиентов гравитационного поля, как гравитационные вариометры и градиентометры. Эти приборы применяются в геологоразведке и геодезии для выработки информации о гравитационных аномалиях путем измерения составляющих градиента ускорения силы тяжести (вторые производные гравитационного потенциала).

Принцип действия гравитационного вариометра основан на взаимодействии пары пробных масс (грузов), разнесенных симметрично относительно измерительной оси с помощью связывающей их конструкции (коромысла), с гравитационным полем Земли.

Известен гравитационный вариометр [1], чувствительный элемент которого содержит коромысло, выполненное в виде стержня, с закрепленными на концах грузами. В центре коромысло подвешено на тонкой нити (торсионе), обладающей крутильной жесткостью. Измерение составляющих гравитационного градиента в этих приборах производится по углу закрутки торсиона, когда благодаря крутильной жесткости торсиона создается крутящий момент, компенсирующий момент, закручивающий коромысло вследствие неравномерности гравитационного поля.

Недостатками данной конструкции являются низкая точность и невысокие эксплуатационные характеристики, обусловленные тем, что в ней не предусмотрено никаких средств измерения гравитационного момента, кроме индикаторов угла поворота коромысла (чаще всего визуальных).

В качестве прототипа по наибольшему числу общих существенных признаков принята конструкция гравитационного вариометра [2], содержащего коромысло с грузами на концах, вывешенное в герметичном корпусе с помощью торсиона, и систему управления движением коромысла, включающую емкостной датчик перемещений, электростатический датчик момента и электронные блоки управления. В этой конструкции на боковых поверхностях грузов размещены плоские роторные электроды; напротив них на корпусе установлены плоские электроды статора так, что каждой паре электродов на роторе соответствует пара электродов на статоре. Идентичные пары электродов ротора и статора образуют емкостной датчик перемещения, а другие идентичные пары образуют датчик момента. Электроды датчиков перемещения подключены к мостовой схеме; в одну диагональ моста включен генератор переменного тока, в другую - усилитель выходного сигнала. Выходной сигнал выпрямляется фазовым детектором, усиливается и подается на вход электростатического датчика момента.

Поворот коромысла под действием гравитационного момента приводит к изменению зазора между роторными и статорными электродами датчика угла и появлению сигнала рассогласования в диагонали моста. Сигнал выпрямляется, усиливается и поступает в качестве управляющего потенциала на соответствующие статорные пластины датчика момента.

Создаваемые таким образом электростатические силы возвращают коромысло в начальное положение. Сигнал датчика положения, пропорциональный изменению зазора между электродами при повороте коромысла на некоторый угол, используется в качестве полезного информационного сигнала для измерения величины гравитационного момента.

Недостатками конструкции-прототипа являются невысокая точность измерения и ограниченная область использования, обусловленные следующими обстоятельствами.

1) Зависимость электростатического взаимодействия от зазора между электродами, так как датчик момента развивает момент, пропорциональный квадрату напряжения и обратно пропорциональный квадрату величины зазора. Такая сложная зависимость момента от зазора затрудняет как процесс управления коромыслом гравитационного вариометра, так и, что особенно важно, измерение гравитационного градиента по величине управляющих моментов в большом диапазоне его изменения.

2) Малые пределы угла поворота коромысла вследствие того, что встречно обращенные рабочие поверхности роторных и статорных электродов датчика момента выполнены в виде параллельных плоскостей.

Задачей предлагаемого изобретения является повышение точности и расширение измерительного диапазона гравитационного вариометра.

Поставленная задача достигается тем, что электроды на коромысле и корпусе выполнены в виде сегментов цилиндров, причем каждый роторный электрод содержит пару одинаковых сегментов цилиндров, расположенных на коромысле так, что центральный угол между полуплоскостями, проходящими через оси цилиндров, отличается от центрального угла между полуплоскостями, проходящими через оси цилиндров статора, связанного с корпусом, цилиндрические поверхности соответствующих сегментов ротора и статора ориентированы встречно, линия пересечения указанных полуплоскостей совпадает с вертикальной осью симметрии коромысла, а выход электронного блока имеет два канала, каждый из которых подключен к соответствующим сегментам цилиндров статоров, оси которых лежат в одной плоскости с осью симметрии коромысла, при этом гравитационный вариометр содержит две пары датчиков момента с взаимно перпендикулярным расположением плоскостей симметрии и параллельным подключением к выходу электронного блока, и в каждой паре разность указанных выше центральных углов равна удвоенному значению угла , при котором функция достигает максимума, где - центральный угол между полуплоскостями, проходящими через оси цилиндров на роторе и статоре; L - расстояние между осью подвеса коромысла и осью цилиндра статора; R - радиус цилиндров ротора и статора; d - зазор между встречно ориентированными цилиндрическими поверхностями сегментов ротора и статора.

Сущность изобретения поясняется чертежом, где на фиг. 1 представлена функциональная схема гравитационного вариометра, а на фиг. 2 приведен график расчетной зависимости функции K(), пропорциональной f(), при различных величинах радиуса R цилиндров.

На фиг. 1 обозначены: 1 - вывешенное в герметичном корпусе (на фиг. 1 не показан) коромысло;
2 - грузы, жестко закрепленные на концах коромысла 1;
3 - роторные электроды электростатического датчика момента, установленные на коромысле 1;
4 - статорные электроды электростатического датчика момента, зафиксированные на корпусе гравитационного вариометра;
5 - электронный блок, к каждому из двух каналов выхода которого подключены сегменты цилиндров, расположенные с одной стороны электродов статора 4;
6 - фотоэлектрический датчик угловых перемещений коромысла 1 относительно корпуса, подключенный ко входу электронного блока 5;
U1 и U2 - управляющие электрические потенциалы, поступающие с каждого канала выхода электронного блока на сегменты цилиндров электродов статора 4;
M1 и M2 - моменты сил, создаваемые в каждой паре противолежащих электродов 3 и 4 датчиков момента;
R - радиус цилиндров ротора 3 и 4 датчиков момента;
O - вертикальная ось симметрии коромысла 1 в виде проекции на плоскость чертежа;
- оси цилиндров ротора 3 в виде проекции на плоскость чертежа;
- оси цилиндров статора 4 в виде проекции на плоскость чертежа;
- полуплоскости, проходящие через оси цилиндров ротора 3 в виде проекции на плоскость чертежа;
- полуплоскости, проходящие через оси цилиндров статора 4 в виде проекции на плоскость чертежа;
- центральный угол между полуплоскостями O4O'3 и O2O'1 (или O'4O3 и O1O'2).

Функционирует гравитационный вариометр представленной конструкции следующим образом.

При отсутствии гравитационного момента коромысло 1 находится в равновесном положении и сигнал с фотоэлектрического датчика угла 6 равен нулю. Управляющие потенциалы U1 и U2, поступающие на статорные электроды 4 от электронного блока 5, равны между собой. Пары электродов датчика момента создают моменты 2M1 и 2M2, равные по величине и противоположные по направлению. В этом случае суммарный момент M, действующий на коромысло 1, равен нулю.

При действии гравитационного момента коромысло 1 отклоняется от равновесного положения. Фотоэлектрический датчик угла 6 вырабатывает сигнал, пропорциональный углу отклонения коромысла 1. Этот сигнал преобразуется электронным блоком 5 в управляющие потенциалы U1 и U2, которые подаются на статор 4 датчика момента. Поскольку в каждом датчике момента одна пара сегментов статора подключена к одному каналу выхода электронного блока 5 (потенциал U1), а другая пара сегментов - к другому каналу (потенциал U2) с обеспечением симметричной структуры подключения, то разность потенциалов (U1 - U2) обуславливает выработку датчиками момента суммарного момента M= (2M1-2M2), который компенсирует гравитационный момент и возвращает коромысло 1 в равновесное положение. Таким образом, разность потенциалов U1 - U2 является мерой гравитационного момента.

Управление коромыслом 1 гравитационного вариометра основано на кулоновском притяжении параллельных электростатически заряженных цилиндров. Тангенциальная составляющая силы притяжения Ft, двух заряженных цилиндров, один из которых размещен на коромысле 1, а другой - на корпусе прибора, в функции угла поворота коромысла 1 определяется расчетной формулой
Ft = K ( ) U2
где
0 - диэлектрическая проницаемость сферы (0 = 8,85 10-12 Ф/м);
l - длина цилиндров ротора 3 и статора 4.

На фиг. 2 приведен график расчетной зависимости К() при различных радиусах R цилиндров для реального варианта градиентометра с d = 1 мм, l = 30 мм и L = 200 мм. Как видно из фиг. 2 тангенциальная составляющая силы притяжения t двух цилиндров радиуса R, центры которых сдвинуты на угол 0, соответствующий максимуму характеристики K(), в некоторой области углов, мало зависит от угла - плоский участок зависимости. В этой области углов силы электростатического взаимодействия определяются только квадратами разности потенциалов между цилиндрами. Выделив в функции К() коэффициент, не зависящий от угла , можно записать:

где
Экспериментальная проверка показала, что силы притяжения двух сегментов цилиндров высотой ~ 2 мм отличаются от сил притяжения двух цилиндров того же радиуса не более чем в 1,5 раза. Это позволило спроектировать и испытать макет малогабаритного датчика момента с сегментами цилиндров в качестве электродов.

Момент, действующий на коромысло гравитационного вариометра, определяется выражением:
M = 2M1-2M2= 2RK(U21-U22) = 2RK(U1+U2)U,
где R' - плечо коромысла.

Обеспечив постоянство U1 + U2, например, включением электродов статора по схеме сдвоенного линейного потенциометра, запитываемого от 2-х источников постоянного тока, получаем момент с линейной зависимостью от разности управляющих потенциалов.

В результате экспериментальной проверки было установлено, что максимальный момент, развиваемый датчиком момента, составляет величину 10-8 H м с погрешностью измерения момента 10-11 H м. Диапазон рабочих углов составил 30 угловых минут при R = 30 мм и d = 1 мм. Такие характеристики датчика момента обеспечивают компенсацию гравитационного момента, воздействующего на коромысло с моментом инерции около 10-1 кг м2 при гравитационном градиенте 1 Этв.

Расположение роторных электродов на торцевых элементах коромысла позволило расширить рабочий диапазон управления движением коромысла гравитационного вариометра, а использование в качестве электродов сегментов цилиндров, расположенных на роторах и статорах указанным образом, обеспечило возможность выработки управляющего момента, величина которого в рабочем диапазоне не зависит от угла поворота коромысла.

Подключение электродов статора по схеме, определяющей постоянство суммы управляющих потенциалов, позволило получить линейную зависимость величины крутящего момента от разности управляющих потенциалов и, как следствие, обеспечило линейную зависимость измеряемого гравитационного момента от управляющего потенциала.

Выполнение в составе гравитационного вариометра двух пар датчиков момента с взаимно перпендикулярным расположением осей симметрии и параллельным подключением к выходу электронного блока позволило реализовать условие независимости управляющего момента от неравномерности зазоров между роторными и статорными электродами датчиков момента, вызванных технологическими погрешностями изготовления прибора, за счет того, что дифференциальные свойства системы управления обеспечиваются как увеличением количества взаимодействующих электродов, так и распределением их в пространстве.

В целом предлагаемая конструкция гравитационного вариометра позволила повысить точность измерений в широком диапазоне изменения гравитационного градиента.

На предприятии изготовлен опытный образец гравитационного вариометра, испытания которого показали положительные результаты. В настоящее время производится отработка технической документации для серийного производства гравитационных вариометров.

Технико-экономическая эффективность изобретения связана с возможностью получения более полной и достоверной информации о гравитационных аномалиях и качественно новым уровнем решения задач геодезии и геологоразведки.

Литература
1. Миронов B.C. "Курс гравиметрии", Л., Наука, 1980 г., с. 265-312.

2. Артамонов В.Е., Пчелинцев В.А. "Об одной схеме высокочувствительных крутильных весов" в сб. "Долговременная стабильность гравиинерциальных приборов", М., Наука, 1979 г., с.47-52.


Формула изобретения

1. Гравитационный вариометр, содержащий вывешенное в герметичном корпусе коромысло с грузами, электростатические датчики момента, роторные электроды которых симметрично установлены на коромысле, а взаимодействующая с каждым из роторных электродов пара одинаковых статорных электродов, подключенных к выходу электронного блока следящей системы, закреплена на корпусе, датчик угловых перемещений коромысла относительно корпуса, подключенный ко входу электронного блока, отличающийся тем, что электроды на коромысле и корпусе выполнены в виде сегментов цилиндров, причем каждый роторный электрод содержит пару одинаковых сегментов цилиндров, расположенных на коромысле так, что центральный угол между полуплоскостями, проходящими через оси цилиндров, отличается от центрального угла между полуплоскостями, проходящими через оси цилиндров статора, связанного с корпусом, при этом цилиндрические поверхности соответствующих сегментов ротора и статора ориентированы встречно, линия пересечения указанных полуплоскостей совпадает с вертикальной осью симметрии коромысла, а выход электронного блока имеет два канала, каждый из которых подключен к сегментам цилиндров статоров, оси которых лежат в одной плоскости с осью симметрии коромысла.

2. Гравитационный вариометр по п.1, отличающийся тем, что содержит две пары датчиков момента с взаимно перпендикулярным расположением плоскостей симметрии и параллельным подключением к выходу электронного блока.

3. Гравитационный вариометр по пп.1 и 2, отличающийся тем, что в каждой паре ортогональных датчиков момента разность центральных углов равна удвоенному значению угла , при котором функция

достигает максимум,
где

- центральный угол между полуплоскостями, проходящими через оси цилиндров на роторе и статоре;
L - расстояние между осью подвеса коромысла и осью цилиндра статора;
R - радиус цилиндров ротора и статора;
d - зазор между встречно ориентированными цилиндрическими поверхностями сегментов ротора и статора.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к геофизическому прибо ростроению и изучению изменения вторых производных потенциала силытяжести во времени.Изобретение позволяет повысить точность измерения устройства

Изобретение относится к области точного приборостроения и может быть использовано при разработке и создании средств измерения градиентов гравитационного поля

Изобретение относится к геофизическому приборостроению, в частности к устройствам для измерения высших производных потенциала силы тяжести

Изобретение относится к способам оперативного прогноза землетрясений и может быть использовано в системах наблюдений и обработки данных геофизических измерений

Изобретение относится к области гравитационной градиентометрии и может быть использовано для геофизических исследований, в частности для оперативного прогноза землетрясений

Изобретение относится к устройствам для геофизических измерений и может быть использовано для оперативного прогноза землетрясений

Изобретение относится к области сейсмологии и может быть использовано для оперативного определения места очага зарождающегося землетрясения. Сущность: устанавливают пары гравитационных вариометров, развернутых в азимуте друг относительно друга на угол, некратный 90˚. Причем пары вариометров устанавливают как минимум на трех сейсмических станциях, с которых определяют направления на очаг землетрясения и места пересечения этих направлений. Фиксируют момент времени изменения уровня крутящего момента в каждом вариометре. При изменении уровня крутящего момента в каждом вариометре измеряют углы колебаний крутильной системы относительно горизонтальных осей. Вычисляют значения арктангенса их отношения и результирующей амплитуды угла. По усредненному значению арктангенса определяют направление на очаг зарождающегося землетрясения. Устройство для реализации данного способа содержит в каждом гравитационном вариометре крутильную систему с гантельным коромыслом, датчиками (4) углов ее колебаний относительно трех осей и датчиками (5) момента системы измерения крутящего момента относительно вертикальной оси. Кроме того, в состав каждой пары гравитационных вариометров введено вычислительное устройство (7). Выходы вычислительного устройства (7) соединены с выходами датчиков (4) углов и входами датчиков (5) момента гравитационных вариометров. Технический результат: повышение точности оперативного предупреждения о месте очага зарождающегося землетрясения. 2 н.п.ф-лы, 2 з.п.ф-лы, 3 ил.

Изобретение относится к геофизическому приборостроению, а именно к гравитационным градиентометрам. Градиентометр состоит из квадруполя и гироблока, размещенных на платформе, стабилизированной в горизонтальной плоскости и вращающейся вокруг азимутального направления. Вращение платформы градиентометра используется для автокомпенсации погрешностей гироазимута. Градиентометр содержит вычислитель с блоком обработки сигнала квадруполя и контуром гировертикали. Второй контур вычислителя позволяет точно определять горизонтальные составляющие скорости вращения Земли, а блок азимута обеспечивает вычисление азимута. В вычислитель также, помимо блока обработки сигналов квадруполя, введены: ячейка индикации перехода сигнала через ноль, блок дифференцирования и индикации знака производной, ячейка «И» с двумя входами и выключатель. Технический результат изобретения заключается в повышении точности и эксплуатационных характеристик гравитационного градиентометра. 5 ил., 2 табл.

Изобретение относится к способам определения гравитационной постоянной вакуумированными крутильными весами. Сущность: притягивающие тела устанавливают на заданных позициях. Задают начальную амплитуду колебаний крутильных весов. Измеряют на всех позициях периоды, амплитуды колебаний весов, а также массы, размеры, положение всех взаимодействующих тел. Рассчитывают моменты притяжения рабочего тела весов притягивающими телами и момент его инерции вокруг вертикальной оси. Определяют гравитационную постоянную по системе двух дифференциальных уравнений движения. При этом выбирают оптимальную амплитуду колебаний и удерживают ее в течение длительного времени, для чего подбирают время задержки перемещения притягивающих тел на следующую позицию с помощью электропривода и узлов перемещения и фиксации. В процессе проведения эксперимента в паузах между измерениями проводят расчеты периодов и амплитуд колебаний, по которым определяют гравитационную постоянную. После этого при необходимости корректируют время задержки, которое обеспечит более точное сохранение амплитуды колебаний. Технический результат: уменьшение погрешности измерений гравитационной постоянной за счет ослабления влияния микросейсм и других дестабилизирующих факторов. 1 ил.

Изобретение относится к способам определения гравитационной постоянной вакуумированными крутильными весами. Сущность: притягивающие тела устанавливают на заданных позициях. Задают начальную амплитуду колебаний крутильных весов. Измеряют на всех позициях периоды, амплитуды колебаний весов, а также массы, размеры, положение всех взаимодействующих тел. Рассчитывают моменты притяжения рабочего тела весов притягивающими телами и момент его инерции вокруг вертикальной оси. Определяют гравитационную постоянную по системе двух дифференциальных уравнений движения. При этом заменяют шаровые грузы на цилиндрические с осевым отверстием, близким к диаметру коромысла. Диаметр грузов выбирают таким, при котором при малом угле отклонения моменты притяжения грузов при шаровой и цилиндрической форме в ближней к весам первой позиции притягивающих тел совпадают. Проверяют полученное равенство при других углах отклонения и позициях притягивающих тел. Собирают весы с цилиндрическим грузами, используя осевые отверстия для крепления коромысла с грузами по скользящей посадке. Расчеты гравитационной постоянной проводят по системе дифференциальных уравнений, в которых моменты притяжения имеют простые аналитические выражения для шаровой формы взаимодействующих тел. Уменьшают погрешность расчётов введением в программу двух массивов корректирующих множителей по углам отклонения весов и позициям притягивающих тел. Технический результат: определение гравитационной постоянной при цилиндрической форме грузов коромысла. 2 табл., 1 ил.
Наверх