Устройство для измерения турбулентных пульсаций скорости

 

Устройство предназначено для использования в области исследования гидрофизических полей при проведении экологических исследований, в экспериментальной гидродинамике, океанологии и других областях техники, где требуется вести контроль параметров турбулентной среды. Устройство содержит четыре идентичных преобразователя скорости в электрический сигнал, также блок вычисления функции. Все четыре преобразователя расположены в одной плоскости, любые три преобразователя из упомянутых четырех не лежат на одной прямой линии. Выходы блока вычисления с первого по четвертый соединены с выходами преобразователей с первого по четвертый соответственно, а выход блока вычисления функции является выходом устройства. Наилучшим вариантом является расположение преобразователей в вершинах квадрата. Благодаря расположению преобразователей уменьшается линейный размер устройства при обеспечении выходного сигнала, свободного от вибрационных помех. 1 з.п. ф-лы, 4 ил.

Изобретение относится к области исследования гидрофизических полей и может быть использовано при проведении экологических исследований, в экспериментальной гидродинамике, океанологии и других областях техники, где требуется вести контроль параметров турбулентной среды.

Известны различные устройства, предназначенные для измерения параметров турбулентной среды, содержащие преобразователи скорости в электрический сигнал (датчики) (см., например, [1], [2], [3]).

Устройство [1] содержит преобразователь скорости в электрический сигнал (датчик скорости электропроводящей среды), выполненный в виде постоянного магнита, в зазоре которого установлены держатель с электродами, соединенными с электронным усилителем. При измерении турбулентных пульсаций скорости преобразователь скорости в электрический сигнал устанавливают в исследуемом потоке и судят о параметрах потока по параметрам электрического сигнала на выходе электронного усилителя.

Недостатком известного устройства [1] является недостаточная точность определения параметров турбулентной среды из-за высокой чувствительности преобразователя скорости в электрический сигнал к паразитным сигналам, возникающим в результате вибраций и неравномерного движения носителя, установленного, например, на буксируемой линии.

Устройство [2] содержит преобразователь скорости в электрический сигнал, выполненный в виде постоянного магнита, в зазоре которого установлены держатель с электродами, соединенными с электронным усилителем. Для компенсации паразитных сигналов, возникающих в результате неравномерного движения преобразователя в исследуемой жидкой среде, устройство дополнительно содержит последовательно соединенные акселерометр, продольная ось которого параллельна продольной оси электромагнитного преобразователя скорости в электрический сигнал, усилитель, интегратор и сумматор, второй вход которого подключен к выходу усилителя, соединенного с электромагнитным преобразователем скорости в электрический сигнал.

Введение акселерометра, усилителя, интегратора и сумматора позволяет несколько снизить влияние на результаты измерений помех, обусловленных неравномерным движением носителя. Однако эффективность снижения влияния помех в устройстве [2] невысока.

Устройство [3] содержит три электрода, один из которых расположен между двумя другими, постоянный магнит, выполненный в форме тела вращения. Три электрода и участки магнитной системы, включающей постоянный магнит, образуют три преобразователя скорости в электрический сигнал. Преобразователи скорости подключены к электронной схеме, включающей два дифференциальных усилителя и сумматор.

Недостатком устройства [3] является низкая точность измерения. Указанный недостаток обусловлен тем, что для компенсации влияния вибраций и неравномерного движения носителя используются те же электроды, что и для формирования полезного сигнала. В результате наряду с компенсацией сигналов помех компенсируются и полезные сигналы.

Известно также устройство для измерения турбулентных пульсаций скорости [4] , являющееся наиболее близким к предлагаемому. Устройство [4] содержит первый преобразователь скорости в электрический сигнал, второй и третий преобразователи скорости в электрический сигнал, идентичные первому преобразователю скорости в электрический сигнал, расположенные на одной прямой линии с первым преобразователем скорости в электрический сигнал по обе стороны от него, а также вычислительный блок, входы которого с первого по третий соединены с выходами преобразователей скорости в электрический сигнал с первого по третий, соответственно, а выход является выходом устройства. После обработки в вычислительном блоке сигналов, поступающих с преобразователей скорости в электрический сигнал, на выходе устройства формируется сигнал, свободный от вибрационных помех.

Недостатком устройства [4] является большой линейный размер устройства. Недостаток обусловлен тем, что для обеспечения компенсации вибрационных помех второй и третий преобразователи пульсаций скорости находятся на одной прямой линии по разные стороны от первого преобразователя скорости в электрический сигнал на расстоянии, исключающем пространственную фильтрацию турбулентных пульсаций скорости.

Задачей изобретения является уменьшение линейных размеров устройства.

Для решения поставленной задачи устройство для измерения турбулентных пульсаций скорости содержит четыре идентичных преобразователя скорости в электрический сигнал, а также блок вычисления функции U = K(U1+2U2+3U3+4U4), ( где U - сигнал на выходе упомянутого блока вычисления функции, В; K - масштабный коэффициент; U1, U2, U3 и U4 - напряжения на первом, втором, третьем и четвертом входах упомянутого блока вычисления функции, соответственно, B; 2,3 и 4- весовые коэффициенты; R13 - расстояние между первым и третьим преобразователями скорости в электрический сигнал;
R14 - расстояние между первым и четвертым преобразователями скорости в электрический сигнал;
R12 - расстояние между первым и вторым преобразователями скорости в электрический сигнал;
24- угол между прямой, проходящей через первый и второй преобразователи скорости в электрический сигнал, и прямой, проходящей через первый и четвертый преобразователи скорости в электрический сигнал;
23- угол между прямой, проходящей через первый и второй преобразователи скорости в электрический сигнал, и прямой, проходящей через первый и третий преобразователи скорости в электрический сигнал;
B = R12(R14 sin24- R13 sin23)- R13 R14 sin(24-23);
при этом все четыре упомянутых преобразователя скорости в электрический сигнал расположены в одной плоскости, любые три преобразователя скорости в электрический сигнал из упомянутых четырех преобразователей скорости в электрический сигнал не лежат на одной прямой линии, входы упомянутого блока вычисления функции с первого по четвертый соединены с выходами преобразователей скорости в электрический сигнал с первого по четвертый, соответственно, а выход упомянутого блока вычисления функции является выходом устройства.

Благодаря новому расположению преобразователей скорости в электрический сигнал и новому вычислительному блоку уменьшается максимальный линейный размер устройства.

В предлагаемом устройстве первый, второй, третий и четвертый преобразователи скорости в электрический сигнал могут быть расположены в вершинах квадрата.

Сущность изобретения поясняется чертежами, на которых изображены:
на фиг. 1 - схема, поясняющая взаимное расположение преобразователей скорости в электрический сигнал в пространстве;
на фиг. 2 - функциональная схема устройства;
на фиг. 3 - схема, поясняющая геометрические соотношения в плоскости расположения преобразователей скорости в электрический сигнал;
на фиг. 4 - схема, поясняющая взаимное расположение первого и второго преобразователей скорости в электрический сигнал.

На фиг. 1 обозначены:
1 - первый преобразователь скорости в электрический сигнал;
2 - второй преобразователь скорости в электрический сигнал;
3 - третий преобразователь скорости в электрический сигнал;
4 - четвертый преобразователь скорости в электрический сигнал.

На фиг. 2 обозначены:
1 - первый преобразователь скорости в электрический сигнал;
2 - второй преобразователь скорости в электрический сигнал;
3 - третий преобразователь скорости в электрический сигнал;
4 - четвертый преобразователь скорости в электрический сигнал;
5 - блок вычисления функции (1).

На фиг. 3 обозначены:
1 - первый преобразователь скорости в электрический сигнал;
2 - второй преобразователь скорости в электрический сигнал;
3 - третий преобразователь скорости в электрический сигнал;
4 - четвертый преобразователь скорости в электрический сигнал;
R12 - расстояние между первым и вторым преобразователями 1 и 2 скорости в электрический сигнал;
R13 - расстояние между первым и третьим преобразователями 1 и 3 скорости в электрический сигнал;
R14 - расстояние между первым и четвертым преобразователями 1 и 4 скорости в электрический сигнал;
24- угол между прямой, проходящей через первый и второй преобразователи 1 и 2 скорости в электрический сигнал, и прямой, проходящей через первый и четвертый преобразователи 1 и 4 скорости в электрический сигнал;
23- угол между прямой, проходящей через первый и второй преобразователи 1 и 2 скорости в электрический сигнал, и прямой, проходящей через первый и третий преобразователи 1 и 3 скорости в электрический сигнал.

На фиг. 4 обозначены:
1 - первый преобразователь скорости в электрический сигнал;
2 - второй преобразователь скорости в электрический сигнал;
6 - чувствительные элементы преобразователей 1, 2;
7 - дифференциальные усилители;
R12 - расстояние между первым и вторым преобразователями 1 и 2 скорости в электрический сигнал.

В соответствии с фиг. 1 устройство содержит идентичные первый, второй, третий и четвертый преобразователи 1, 2, 3 и 4 скорости в электрический сигнал, расположенные в одной плоскости. Любые три преобразователя скорости в электрический сигнал из упомянутых четырех преобразователей скорости в электрический сигнал не лежат на одной прямой линии, то есть расположены в вершинах четырехугольника. Этот четырехугольник может иметь форму трапеции, параллелограмма, ромба или иную форму. Наилучшим вариантом является расположение преобразователей 1-4 в вершинах квадрата.

Плоскость, в которой расположены преобразователи 1-4, может иметь в пространстве любое положение при условии сохранения работоспособности преобразователей 1-4. В частности, преобразователи 1-4 должны быть правильно ориентированы по отношению к направлению набегающего потока и не должны "затенять" друг друга. Наилучшим вариантом является такая ориентация преобразователей 1-4, при которой плоскость, в которой они расположены, перпендикулярна направлению набегающего потока.

Расположение преобразователей 1-4 в одной плоскости, расстояния и углы между преобразователями 1-4 определяются по нахождению центров чувствительных зон. Обычно это ось симметрии чувствительного элемента 6 (см., например, фиг. 4). Поскольку геометрические размеры чувствительного элемента 6 каждого из преобразователей 1-4 во много раз меньше расстояния между ними, необходимые геометрические соотношения легко определяются.

Минимальные расстояния R12, R13 и R14 выбирают из условия отсутствия влияния преобразователей 1-4 друг на друга. Максимальные расстояния R12, R13 и R14 ограничиваются конструктивными возможностями и условиями соблюдения конструктивной жесткости взаимного расположения преобразователей 1-3. Обычно расстояния R12, R13 и R14 составляют 0,1-1,0 м.

Преобразователи 1-4 скорости в электрический сигнал могут быть электромагнитного, термоанемометрического или иного другого известного типа.

Выходы преобразователей 1, 2, 3 и 4 соединены, соответственно, с первым, вторым, третьим и четвертым входами блока 4 вычисления функции (1), выход которого является выходом устройства (фиг. 2).

Блок 5 вычисления функции (1) может быть выполнен, например, на операционных усилителях, реализующих функции весового суммирования, или включать в свой состав многоканальный аналого-цифровой преобразователь и микропроцессорный вычислитель функции (1).

В каждом преобразователе 1-4, например, электромагнитного типа, наряду с чувствительным элементом 6 имеется, как правило, подключенный к чувствительному элементу 6 усилитель, в частности, дифференциальный усилитель (ДУ) 7.

Предлагаемое устройство работает следующим образом.

Носитель, например, буксируемая линия корабля экологического мониторинга, осуществляет перемещение жестко связанных преобразователей 1-4 скорости в электрический сигнал в исследуемой среде. После обработки в блоке 5 по формуле (1) сигналов преобразователей 1-4, на выходе блока 5 вырабатывается неискаженный сигнал, свободный от вибрационных помех, который поступает для последующей обработки и определения параметров турбулентности.

Предлагаемое изобретение может быть использовано как для измерения однокомпонентных пульсаций скорости, так и для многокомпонентных. В последнем случае выходные сигналы по каждому каналу обрабатываются с помощью блоков вычисления функции (1), количество которых соответствует количеству измеряемых компонент скорости.

Таким образом, использование предлагаемого изобретения позволяет уменьшить линейные размеры устройства. Расчеты показывают, что линейные размеры устройства можно уменьшить в 1,2-1,4 раза, что имеет большое значение при установке устройства на носителях с ограниченными размерами. Кроме этого, предлагаемое изобретение позволяет существенно расширить рабочий диапазон пространственных масштабов измеряемых турбулентных пульсаций скорости при сохранении максимального размера устройства.

Представленное описание и чертежи позволяют, используя существующую элементную базу, изготовить предлагаемое устройство в производстве и использовать его в тех областях техники, где требуется определять параметры турбулентности, в том числе вести контроль состояния морской среды с подвижного носителя, что характеризует изобретение как промышленно применимое.

Список литературы
1. Авт. св. СССР N 356564, МПК G 01 P 5/08, 1972 г.

2. Авт. св. СССР N 685984, МПК G 01 P 5/08, 1979 г.

3. Авт. св. СССР N 773496, МПК G 01 P 5/08, 1980 г.

4. Свид. на ПМ РФ N 15404, МПК G 01 N 27/00, 2000 г. (прототип).


Формула изобретения

1. Устройство для измерения турбулентных пульсаций скорости, содержащее идентичные первый, второй и третий преобразователи скорости в электрический сигнал, отличающееся тем, что в него дополнительно введены четвертый преобразователь скорости в электрический сигнал, идентичный первому, второму и третьему преобразователям скорости в электрический сигнал, а также блок вычисления функции
U = K(U1+2U2+3U3+4U4),
где U - сигнал на выходе упомянутого блока вычисления функции, В;
К - масштабный коэффициент;
U1, U2, U3 и U4 - напряжения на первом, втором, третьем и четвертом входах упомянутого блока вычисления функции соответственно, В;
2,3 и 4 - весовые коэффициенты:



R13 - расстояние между первым и третьим преобразователями скорости в электрический сигнал;
R14 - расстояние между первым и четвертым преобразователями скорости в электрический сигнал;
R12 - расстояние между первым и вторым преобразователями скорости в электрический сигнал;
24 - угол между прямой, проходящей через первый и второй преобразователи скорости в электрический сигнал, и прямой, проходящей через первый и четвертый преобразователи скорости в электрический сигнал;
23 - угол между прямой, проходящей через первый и второй преобразователи скорости в электрический сигнал, и прямой, проходящей через первый и третий преобразователи скорости в электрический сигнал;
B = R12(R14 sin24- R13 sin23)- R13 R14 sin(24-23),
при этом все четыре упомянутых преобразователя скорости в электрический сигнал расположены в одной плоскости, любые три преобразователя скорости в электрический сигнал из упомянутых четырех преобразователей скорости в электрический сигнал не лежат на одной прямой линии, входы упомянутого блока вычисления функции с первого по четвертый соединены с выходами преобразователей скорости в электрический сигнал с первого по четвертый соответственно, а выход упомянутого блока вычисления функции является выходом устройства.

2. Устройство по п. 1, отличающееся тем, что первый, второй, третий и четвертый преобразователи скорости в электрический сигнал расположены в вершинах квадрата.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4



 

Похожие патенты:

Изобретение относится к области исследования гидрофизических полей и может быть использовано при проведении экологических исследований, в экспериментальной гидродинамике, океанологии и других областях техники, где требуется вести контроль параметров турбулентной среды

Изобретение относится к области исследования гидрофизических полей и может быть использовано при проведении экологических исследований, в экспериментальной гидродинамике, океанологии и других областях техники, где требуется вести контроль параметров турбулентной среды

Изобретение относится к области аэродинамики и газодинамики и может быть использовано для определения расхода радиоактивного газового потока и плотности ионизации в нем, например, в системах контроля величины выброса в вентиляционную трубу атомной станции или любой другой ядерной энергетической установки

Изобретение относится к измерительной технике, преимущественно к средствам контроля потоков жидкостей с ионной проводимостью, и может быть использовано для измерения расхода и количества воды, растворов солей, щелочей, кислот, пищевых жидкостей и т.п

Изобретение относится к измерительной технике и может быть использовано для измерения расходов электропроводных жидкостей в различных отраслях народного хозяйства

Изобретение относится к измерительной технике и физике межфазных явлений и может быть использовано в гидродинамике для определения расхода жидкости

Изобретение относится к измерительной технике и может быть использовано для исследования динамики газовых потоков в верхних слоях атмосферы и в аэродинамических установках

Изобретение относится к области измерительной техники, в частности к средствам определения орбитальных волновых скоростей в прибрежной зоне моря, где параметры течений характеризуются наибольшей изменчивостью и экстремальными значениями при относительно небольших глубинах, при исследовании движения водного потока и транспорта наносов

Изобретение относится к измерительной технике и может использоваться для измерения скорости потока токопроводящих и токонепроводящих жидкостей, в частности в нефтедобывающей отрасли при контроле работы нефтяных скважин

Изобретение относится к области исследования гидрофизических полей и может быть использовано при проведении экологических исследований, в экспериментальной гидродинамике, океанологии и других областях техники, где требуется вести контроль параметров турбулентной среды

Изобретение относится к области исследования гидрофизических полей и может быть использовано при проведении экологических исследований, в экспериментальной гидродинамике, океанологии и других областях техники, где требуется вести контроль параметров турбулентной среды

Изобретение относится к области исследования гидрофизических полей и может быть использовано при проведении экологических исследований, в океанологии и других областях техники

Изобретение относится к области исследования гидрофизических полей и может быть использовано при проведении экологических исследований, в океанологии и других областях техники, где требуется вести контроль параметров турбулентных пульсаций скорости в морской среде

Изобретение относится к навигации, в частности к средствам управления движением морских и речных судов

Изобретение относится к области измерительной техники

Изобретение относится к измерительной технике и предназначено для измерения скорости потока электропроводящей жидкости, например морской воды

Изобретение относится к измерительной технике и предназначено для измерения скорости потока электропроводящей жидкости, например морской воды
Наверх