Способ обезгаживания изделий и устройство для его реализации

 

Изобретение относится к испытательной технике, в частности к испытаниям изделий на обезгаживание, и может найти применение в тех областях техники, где предъявляются повышенные требования к чистоте изделий. Способ состоит в том, что помещают изделие в вакуумную камеру, экранируют стенки камеры от теплового потока с помощью обезгаженного теплоизолирующего экрана, нагревают изделие до температуры, не превышающей температуру обезгаживания, вакуумируют камеру с одновременным охлаждением стенок камеры и поддерживают температуру на изделии после вакуумирования, равную температуре обезгаживания в течение времени выхода процесса обезгаживания на квазистационарный режим, прекращают вакуумирование и доводят давление в вакуумной камере до атмосферного, при этом поддерживают перепад температуры изделие - стенки камеры, равным этому перепаду в момент перед вакуумированием камеры. Устройство для осуществления способа содержит вакуумную камеру, нагреватели, элемент охлаждения и обезгаженный теплоизолирующий экран, установленный между нагревателями и элементом охлаждения, размер которого равен плоскости сечения прямого теплового потока от нагревателей. Способ позволяет максимально снизить величину загрязнения изделия веществами, выделяемыми с поверхности стенок камеры и ее составляющих, а также сократить время обезгаживания. 2 с.п.ф-лы, 1 ил.

Изобретение относится к испытательной технике, в частности, к испытаниям изделий на обезгаживание и может найти применение в тех областях техники, где предъявляются повышенные требования к чистоте изделий.

В процессе эксплуатации изделий, например, космических аппаратов, из материалов их конструкций в космическом пространстве происходит выделение летучих веществ, часть которых может конденсироваться на поверхностях, например, оптических приборов, солнечных батареях и ухудшать их работоспособность. Для уменьшения загрязняющего воздействия продуктами газовыделения материалов конструкций поверхностей изделий проводят обезгаживание материалов в наземных условиях при имитации условий эксплуатации изделий.

Известен способ обезгаживания изделий, заключающийся в том, что помещают изделие в вакуумную камеру, вакуумируют камеру, изделие нагревают и выдерживают его в вакуумной камере в течение заданного времени [1, стр. 187-188].

Способ реализуется с помощью устройства обезгаживания изделий, содержащим вакуумную камеру и нагреватели [1, стр. 187-188].

Наиболее близким по технической сущности и достигаемому результату к предлагаемому является способ обезгаживания изделий, заключающийся в том, что помещают изделие в вакуумную камеру, производят предварительный нагрев изделия до температуры, не превышающей температуру обезгаживания, вакуумируют камеру и поддерживают температуру на изделии, после вакуумирования стенки камеры охлаждают, а на изделии поддерживают температуру обезгаживания в течение времени выхода процесса обезгаживания на квазистационарный режим, прекращают вакуумирование и доводят давление в вакуумной камере до атмосферного, поддерживая перепад температуры изделие - стенки камеры, равным этому перепаду в момент перед вакуумированием камеры [2].

Этот способ реализуется с помощью устройства обезгаживания изделий, содержащим вакуумную камеру, нагреватели, элемент охлаждения [2].

Данный способ обезгаживания изделий и устройство его реализации приняты заявителем за прототип.

Недостатком аналогов и прототипов является то, что они не защищают в достаточной степени изделия от загрязнений, в частности, возникающих в результате десорбции летучих веществ с поверхности стенок вакуумной камеры. Особенно это сказывается при обезгаживании крупногабаритных изделий сложной конфигурации, изготовленных из разных материалов, в вакуумных камерах большого объема, поверхность стенок которых составляет несколько сотен квадратных метров, и хорошо очистить эту поверхность очень трудно, а в процессе нагрева с теплой поверхности стенок камеры происходит испарение загрязняющих веществ, которые попадают на изделие в процессе обезгаживания.

Так как обезгаживаемые изделия, особенно в космической технике, имеют сложную конфигурацию, то часть теплового потока при нагреве изделия попадает на стенки камеры и нагревает их до значительных температур, при этом начинается десорбция летучих веществ со стенок камеры и последние попадают на изделие, подвергаемое обезгаживанию, что ухудшает и замедляет процесс обезгаживания.

Задачей изобретения является повышение степени обезгаживания и, как следствие, снижение величины загрязнения от стенок камеры с одновременным сокращением времени обезгаживания.

Техническим результатом использования предлагаемого способа является повышение работоспособности испытываемых изделий в течение длительного времени при их эксплуатации.

Указанный технический результат достигается тем, что в известном способе обезгаживания изделий, заключающемся в том, что помещают изделие в вакуумную камеру, производят предварительный нагрев изделия до температуры, не превышающей температуру обезгаживания, вакуумируют камеру и поддерживают температуру на изделии, стенки камеры охлаждают, а после вакуумирования на изделии поддерживают температуру обезгаживания в течение времени выхода процесса обезгаживания на квазистационарный режим, прекращают вакуумирование и доводят давление в вакуумной камере до атмосферного, поддерживая перепад температуры изделие - стенки камеры, равным этому перепаду в момент перед вакуумированием камеры, согласно изобретению после помещения изделия в вакуумную камеру экранируют стенки камеры от теплового потока с помощью обезгаженного теплоизолирующего экрана, а стенки камеры охлаждают в процессе вакуумирования.

В известное устройство обезгаживания изделий, содержащее вакуумную камеру, нагреватели, элемент охлаждения, дополнительно введен обезгаженный теплоизолирующий экран, установленный между нагревателями и элементом охлаждения.

На чертеже представлена функциональная схема устройства обезгаживания изделий, где: 1 - изделие; 2 - вакуумная камера; 3 - теплоизолирующий экран; 4, 5 - нагреватели; 6 - элемент охлаждения.

Устройство обезгаживания изделий содержит вакуумную камеру 1 (в составе которой системы вакуумирования, измерения и управления), нагреватели 4-5, теплоизолирующий экран 3 и элемент охлаждения 6 (в составе которого система подачи хладагента и его дренажа).

Способ обезгаживания изделия 1, размещенного внутри вакуумной камеры 2 осуществляется следующим образом.

Изделие 1 помещают в вакуумную камеру 2 и устанавливают обезгаженный теплоизолирующий экран 3 между нагревателями 4-5 и элементом охлаждения 6 таким образом, чтобы не допустить попадания прямого теплового потока от нагревателей 4-5 и отраженного потока от нагретого изделия 1 на стенки камеры 2. Нагревают изделие 1 до температуры, не превышающей температуру дегазации. Вакуумируют камеру с одновременным охлаждением стенок камеры с помощью элемента охлаждения 6 (охлаждение стенок камеры заметно повышает эффективность конденсирования на них загрязняющих веществ от изделия и оборудования камеры) и поддерживают температуру на изделии 1, а после вакуумирования поддерживают температуру изделия 1, равную температуре обезгаживания в течение времени выхода процесса обезгаживания на квазистационарный режим. Прекращают вакуумирование камеры 1 и доводят давление в вакуумной камере 1 до атмосферного, при этом поддерживают перепад температуры изделие - стенки камеры равным этому перепаду в момент перед вакуумированием камеры.

При нагреве изделия сложной конфигурации и состоящего из различных конструкционных материалов неизбежно попадание теплового потока, частично прямого от нагревателей и отраженного от самого изделия, на стенки камеры и на элемент охлаждения. При этом стенки камеры нагреваются до значительных температур, начинается десорбция веществ со стенок камеры, появляется поток частиц, который загрязняет изделие, и замедляется процесс обезгаживания. Кроме того, элемент охлаждения, по которому проходит хладагент, например, жидкий азот, охлаждающий стенки камеры, тоже нагревается. Хладагент начинает интенсивно испаряться и его расход увеличивается, а также из-за разницы температур в элементе охлаждения появляются температурные нагрузки и он может деформироваться. Эти отрицательные эффекты позволяет избежать установка теплоизолирующего экрана, размер которого должен быть равен плоскости сечения прямого теплового потока от нагревателей. Кроме того, охлаждение стенок камеры одновременно с вакуумированием камеры позволяет избежать дополнительного попадания загрязняющих веществ со стенок камеры на изделие в процессе его предварительного нагрева до температуры, не превышающей температуру обезгаживания.

Проводились испытания по обезгаживанию элементов конструкции космического аппарата по способу, указанному в прототипе. Результаты обезгаживания следующие: - контроль пробы с лицевой стороны элемента конструкции космического аппарата показал наличие масляной пленки (флюоресценции); - температура стенки камеры в районе попадания на нее теплового потока достигла значения порядка 46oC, близкого к температуре обезгаживания изделия, заданной в диапазоне от 50 до 55oC, а из опыта известно, что прогрев стенок камеры до 30oC приводит к выделению загрязняющих веществ с поверхности камеры; - массопоток от элементов конструкции, фиксируемый кварцевыми микровесами, стабилизировался после 72 часов от начала обезгаживания.

При использовании предлагаемого способа обезгаживания изделий, то есть с использованием обезгаженных экранов и охлаждаемых стенок камеры, для аналогичного элемента конструкции были получены следующие результаты: - наличие масляной пленки (флюоресценции) на лицевой стороне элемента конструкции не обнаружено;
- массопоток от элемента конструкции, фиксируемый кварцевыми микровесами, стабилизировался после 48 часов от начала обезгаживания;
- температура стенок камеры не превышала 10-15oC; стенки камеры охлаждались воздухом, подаваемым от сети высокого давления, а в качестве теплоизолирующих экранов использовались маты экранновакуумной теплоизоляции, прошедшие предварительное обезгаживание.

По сравнению с прототипом предлагаемый способ позволяет максимально снизить величину загрязнения изделия веществами, выделяемыми с поверхности стенок и оборудования камеры, что важно для изделий, эксплуатируемых на орбите более пяти лет и позволяет сократить время обезгаживания, в результате чего экономятся энергоресурсы.

Предлагаемый способ достаточно прост в эксплуатации и не требует разработки специального оборудования.

Литература
1. Н. В. Черепнин. "Основы очистки, обезгаживания и откачки в вакуумной технике". Изд. "Советское радио", 1967 г.

2. Патент Российской Федерации N 2155106, заявка N 99112345 от 07.06.1999 г.


Формула изобретения

1. Способ обезгаживания изделий, включающий помещение изделия в вакуумную камеру, предварительный нагрев изделия до температуры, не превышающей температуру обезгаживания, вакуумирование камеры, поддерживание температуры на изделии и охлаждение стенок камеры, причем после вакуумирования поддерживают температуру обезгаживания на изделии в течение времени выхода процесса обезгаживания на квазистационарный режим, затем прекращают вакуумирование и доводят давление в вакуумной камере до атмосферного, поддерживая перепад температуры изделие - стенки камеры равным этому перепаду в момент перед вакуумированием камеры, отличающийся тем, что после помещения изделия в вакуумную камеру экранируют стенки камеры от теплового потока с помощью обезгаженного теплоизолирующего экрана, а стенки камеры охлаждают в процессе вакуумирования.

2. Устройство обезгаживания изделий, содержащее вакуумную камеру, нагреватели, элемент охлаждения, отличающееся тем, что в него дополнительно введен обезгаженный теплоизолирующий экран, установленный между нагревателями и элементом охлаждения, размер которого равен плоскости сечения прямого теплового потока от нагревателей.

РИСУНКИ

Рисунок 1



 

Похожие патенты:
Изобретение относится к испытательной технике, в частности к испытаниям изделия на обезгаживание, и может найти применение в тех областях техники, где предъявляются повышенные требования к чистоте изделий

Изобретение относится к устройствам для избирательного всасывания мелких объектов и может быть использовано, например, в домашнем хозяйстве при извлечении сорных включений из круп

Изобретение относится к вакуумной технике , в частности к вакуумным установкам

Изобретение относится к технике сушки и применяется для сушки банок

Изобретение относится к области металлургии ,в частности, к устройствам для удаления жидкости с поверхности полосового и круглого проката в агрегатах травления, обезжиривания, мойки и нанесения защитных покрытий, и обеспечивает повышение качества очистки и снижение энергозатрат процесса очистки

Изобретение относится к машиностроению , может быть использовано для очистки плоских и криволинейных поверхностей от загрязнений и обеспечивает улучшение удобства обслуживания и повышение качества зачистки
Изобретение относится к области испытательной техники, в частности к испытаниям изделий на обезгаживание в условиях, приближенных к эксплуатации изделий, например космических объектов

Изобретение относится к устройству для очистки отверстия под анкерный болт, которое имеет простую конструкцию и может эффективно соскребать стружечный порошок, прилипший к внутренней периферийной поверхности отверстий различного диаметра под анкерный болт, и стружечный порошок, скопившийся в нижней части

Изобретение относится к пылеуборочной технике, может быть использовано в различных отраслях народного хозяйства, применяющих системы вакуумной пылеуборки, и касается пылеуборочной установки

Изобретение относится к транспортным средствам высокой проходимости с использованием воздушной подушки, например, в карьерах после взрывных работ. Транспортное средство содержит корпус, днище, гибкое ограждение полости воздушной подушки, выполненное по периметру днища корпуса, сопла для подачи сжатого воздуха, всасывающий воздухозаборник нагнетателя воздуха, перепускные трубопроводы, грузовой контейнер. При этом за пределами периметра гибкого ограждения воздушной полости днище снабжено закольцованным патрубком с соплами для засасывания сыпучего материала. Причем закольцованный патрубок посредством перепускных трубопроводов сообщен последовательно как с грузовым контейнером для сбора сыпучего материала и очистки от него воздуха, так и с воздухозаборником. Достигается обеспечение сбора и транспортировки пылеобразующего сыпучего материала с поверхности грунта. 1 ил.
Наверх