Способ стабилизации полиизопренового каучука

 

Изобретение относится к технологии получения синтетического полиизопрена, в частности к его стабилизации антиоксидантами. Способ состоит во введении в раствор получаемого полимера раствора антиоксидантов аминного типа в органическом растворителе. В качестве растворителя используют С5, С6 алифатические углеводороды, содержащие 5-11 мас. % олефинового углеводорода С518 или их смеси. В качестве аминных антиоксидантов используют смесь п-фенилендиаминов: N-(1,3-диметилбутил)-N'-фенил-п-фенилендиамина с N-(1,3-диметилбутил)-N'-(4-кумилфенил)-п-фенилендиамином или N-(1,4-диметилпентил)-N'-фенил-п-фенилендиамином. Технический результат изобретения состоит в повышении эффективности стабилизации полиизопрена, снижении энергозатрат при выделении полимера из раствора и регенерации растворителя, улучшении экологии. 3 табл.

Изобретение относятся к технологии получения синтетического полиизопрена, в частности к их стабилизации путем введения в раствор полидиена антиоксидантов.

Известен способ стабилизации полиизопрена, заключающийся в том, что после предварительной дезактивации катализатора метанолом и отмывки полимера от продуктов разложения катализаторов в раствор полимера вводят антиоксиданты. Антиоксиданты вводят в виде суспензии в воде с концентрацией 3-5 мас. % с добавлением щелочи и поверхностно-активных веществ. Отмытый раствор полимера смешивается с суспензией антиоксидантов в интенсивных смесителях и подается затем на усреднение, выделение и сушку каучука [Кирпичников П. А. и др. Химия и технология синтетического каучука. М. , 1970, с. 305] .

Недостатками указанного способа стабилизации являются неудовлетворительное распределение антиоксидантов в полимере, значительные потери антиоксидантов в процессе транспортировки суспензии и стабилизации полиизопрена, необходимость использования вспомогательных химикатов, повышенный сброс химзагрязненных вод.

Наиболее близким по своей технической сущности к изобретению является способ стабилизации полиизопренового каучука, получаемого полимеризацией изопрена на катализаторах Циглера-Натта, в среде углеводородного растворителя, заключающийся в том, что в раствор полимера вводят в метанол-толуольном растворителе смесь антиоксидантов аминного типа: фенил--нафтиламина и N, N'-дифенил-п-фенилендиамина. Антиоксиданты вводят с концентрацией 3-4 мас. %. Стабилизированный каучук проходит отмывку от остатков каталитического комплекса, далее усреднение, выделение и сушку каучука [Т. В. Башкатов, Я. Л. Жигалин. Технология синтетических каучуков. Л. , Химия, 1987, с. 159] .

Однако указанный способ имеет ряд недостатков: необходимы большие энергетические затраты как на отгонку высококипящего растворителя - толуола при дегазации полиизопрена, на регенерацию растворителей: метанола из сточных вод, толуола из возвратного растворителя, так и при приготовлении раствора стабилизатора. Другим недостатком указанного способа является загрязнение сточных вод и окружающей среды метанолом. К недостаткам указанного способа можно отнести потери антиоксидантов в процессе приготовления раствора антиоксидантов, забивку фильтров, насосов и регулирующих клапанов при растворении и при транспортировке.

Задачей изобретения является повышение эффективности стабилизации полиизопрена, снижение энергозатрат при выделении полимера из раствора и регенерации растворителя, улучшение экологического состояния рабочей зоны и сточных вод.

Указанная задача решается тем, что в способе стабилизации полиизопрена, получаемого полимеризацией изопрена в среде углеводородного растворителя, включающем введение в раствор полимера раствора в органическом растворителе антиоксидантов аминного типа, в качестве органического растворителя для антиоксидантов используют С5, С6 алифатические углеводороды, содержащие от 5 до 11 мас. % олефинового углеводорода С518 или их смеси. В качестве аминных антиоксидантов можно использовать смесь п-фенилендиаминов: N-(1,3-диметилбутил)-N'-фенил-п-фенилендиамина с N-(1,3-диметилбутил)-N'-(4-кумилфенил)-п-фенилен-диамином (I) или N-(1,4-диметилпентил)-N'-фенил-п-фенилендиамином (II).

По предлагаемому способу стабилизации исключение высококипящего толуола и экологически опасного растворителя-метанола из раствора антиоксидантов значительно уменьшает расход водяного пара на отгонку углеводородов из полиизопрена, на регенерацию толуола из возвратной изопентан-изопреновой фракции, метанола из сточных вод. Улучшается экологическая обстановка в рабочей зоне и в сточных водах производства полиизопрена.

Ввиду хорошей растворимости антиоксидантов в указанной смеси углеводородов, нет необходимости нагревания раствора антиоксидантов во время приготовления, хранения и перед подачей в полимеризат, уменьшаются потери при растворении, транспортировке и смешении антиоксиданта с полимеризатом. В отличие от метанол-толуольного растворителя, предлагаемая смесь углеводородов не коагулирует полимер из раствора, чем достигается хорошее распределение антиоксиданта в растворе полимера, что приводит к повышению эффективности стабилизации полиизопрена.

Благодаря использованию для растворения антиоксидантов алифатических углеводородов С5, С6, содержащих от 5 до 11 мас. % олефиновых углеводородов C5-C18 или их смеси, достигается хорошее растворение указанных антиоксидантов аминного типа. Лучшие экономические показатели достигаются при использовании олефинов С56, С10-C18 или их смеси. Олефины С56 при регенерации растворителя полимеризации полностью возвращаются и не оказывают влияние на процесс полимеризации. Олефины С1018 на стадии дегазации горячей водой не уносятся растворителем, а остаются в каучуке. При этом не ухудшается показатель потери массы при сушке при 105oС, а улучшаются технологические свойства при приготовлении резиновых смесей. Увеличение содержания олефиновых углеводородов C10-C18 выше 11 мас. % ухудшает физико-механические свойства каучука, олефиновые углеводороды С56 выше 11 мас. % ухудшают процесс полимеризации. Использование олефинов выше C18 не улучшает растворение антиоксидантов в растворителе.

Стабилизация полиизопрена осуществляется следующим образом. Растворитель для растворения антиоксиданта подают в емкость с мешалкой. Антиоксидант загружают дозировочным насосом, и раствор перемешивают. Раствор антиоксиданта из емкости с мешалкой откачивают в промежуточную емкость, откуда далее направляют на узел смешения антиоксидантов с раствором полимера. Технический результат достигается при различных аминных антиоксидантах.

Пример 1 В лабораторных условиях определяют растворимость антиоксидантов в изопентане, содержащем 11 мас. % олефиновых углеводородов C5. Температура растворения - комнатная, растворение проводят при постоянном перемешивании. Растворимость антиоксидантов приведена в таблице 1.

Примеры 2-4 Растворение антиоксидантов (I) и (II) проводят согласно примеру 1. Растворимости антиоксидантов приведены в таблице 1.

Примеры 5-8 Растворение антиоксидантов проводят в гексане согласно примеру 1. Полученные результаты растворимости приведены в таблице 1.

Примеры 1-8 показывают, что добавление в алифатические углеводороды С5, С6 от 5 до 11 мас. % олефиновых углеводородов C5-C18 или их смеси увеличивает растворимость аминных антиоксидантов (I) и (II) на 1,8-9,4%, что позволяет использовать более концентрированные растворы антиоксидантов.

Пример 9 На пилотной установке проводят смешение раствора антиоксидантов с раствором полиизопрена. Содержание полиизопрена в полимеризате 13 мас. %. При температуре окружающей среды в изопентане, содержащем 11 мас. % изоамиленов, растворяют смесь антиоксидантов (I). Полученный 12%-ный раствор антиоксидантов дозировочным насосом подают на смешение в аппарат с мешалкой, чтобы в полимере содержание антиоксидантов было 0,25 мас. %. Далее полимеризат отмывают водой, дегазируют растворитель из полимера водяным паром и сушат. В полученном полимере определяют содержание антиоксидантов, потери антиоксидантов в процессе стабилизации, отмывки, дегазации полиизопрена. Результаты содержания антиоксидантов в каучуке и потери антиоксидантов в процессе стабилизации, отмывки, дегазации приведены в таблице 2.

Пример 10 По примеру 9, для стабилизации полиизопрена используют 13%-ный раствор смеси антиоксидантов (I) в гексане. Последний содержит 5 мас. % олефинов фракции С1014. Расчетное содержание антиоксидантов в полимере 0,2 мас. %. Результаты содержания антиоксидантов в каучуке и потери антиоксидантов в процессе стабилизации, отмывки, дегазации приведены в таблице 2.

Пример 11 По примеру 9 для стабилизации полиизопрена используют 11,5%-ный раствор смеси антиоксидантов (II) в изопентане, содержащем 6 мас. % олефинов фракции С6-C8. Расчетное содержание антиоксидантов в полиизопрене 0,3 мас. %. Результаты содержания антиоксидантов в каучуке и потери антиоксидантов в процессе стабилизации, отмывки, дегазации приведены в таблице 2.

Пример 12 По примеру 9 для стабилизации полиизопрена используют 14%-ный раствор смеси антиоксидантов (II) в гексане, содержащий 8 мас. % гексена-1. Расчетное содержание антиоксидантов в полиизопрене 0,15 мас. %. Результаты содержания антиоксидантов в каучуке и потери антиоксидантов в процессе стабилизации, отмывки, дегазации приведены в таблице 2.

Пример 13
Производство полиизопрена СКИ-3. Стабилизацию полиизопрена осуществляют по предлагаемому способу. Растворение смеси антиоксидантов (I) проводят в изопентане, содержащем 5 мас. % олефинов фракции C14-C18. Концентрация антиоксидантов в растворе 12 мас. %. Концентрация полимера в полимеризате 13-14 мас. %. Расчетное содержание антиоксидантов в каучуке 0,2 мас. %. Для определения свойств каучука и физико-механических свойств, изготовленных на его основе модельных вулканизатов (таблица 3), берут образец каучука, содержащего среднее значение антиоксидантов, полученное в отобранных брикетах.

Содержание антиоксидантов в готовом каучуке, мас. % - 0,195
Потери антиоксидантов в процессе стабилизации, отмывки и дегазации полиизопрена, % - 2,5
Удельный расход пара на дегазацию полиизопрена, т/т каучука - 4,05
Расход пара на регенерацию растворителей, т/т каучука - 5,0
Пример 14
По примеру 13 растворение смеси антиоксидантов (II) проводят в изопентане, содержащем 6 мас. %. олефинов фракции C14-C18. Концентрация антиоксидантов в растворе 12 мас. %. Концентрация полимера в полимеризате 13 мас. %. Расчетное содержание антиоксидантов в каучуке 0,25 мас. %. Свойства каучука и физико-механические свойства изготовленных на его основе модельных вулканизатов приведены в таблице 3.

Содержание антиоксидантов в готовом каучуке, мас. % - 0,245
Потери антиоксидантов в процессе стабилизации, отмывки и дегазации полиизопрена, % - 2,0
Удельный расход пара на дегазацию полиизопрена, т/т каучука - 4,05
Расход пара на регенерацию растворителей, т/т каучука - 5,0
Примеры 13 и 14 показывают, что растворение смесей антиоксидантов (I) или (II) в предлагаемом составе растворителей улучшает стойкость к термоокислению и механодеструкции каучука и не ухудшает физико-механические свойства вулканизатов на его основе.

Пример 15
По примеру 9 для стабилизации полиизопрена используют 11,5%-ный раствор антиоксиданта С-789 в изопентане, содержащем 6 мас. % олефинов фракции С68. Расчетное содержание антиоксидантов в полиизопрене 0,2 мас. %. Результаты содержания антиоксидантов в каучуке и потери антиоксидантов в процессе стабилизации, отмывки, дегазации приведены в таблице 2.

Анализ вышеприведенных примеров показывает, что использование в качестве растворителей аминных антиоксидантов алифатических углеводородов С5, С6, содержащих 5-11 мас. % олефинового углеводорода C5-C18 или их смеси, позволяет повысить эффективность стабилизации каучука, снизить энергозатраты при выделении полимера из раствора и регенерации растворителя, улучшить экологическую обстановку в рабочей зоне и в сточных водах.


Формула изобретения

1. Способ стабилизации полиизопренового каучука, получаемого полимеризацией изопрена в среде углеводородного растворителя, включающий введение в раствор получаемого полимера раствора антиоксидантов аминного типа в органическом растворителе, отличающийся тем, что в качестве органического растворителя антиоксидантов используют С5, С6 алифатические углеводороды, содержащие в количестве от 5 до 11 мас. % олефиновый углеводород С518 или их смеси.

2. Способ по п. 1, отличающийся тем, что в качестве аминных антиоксидантов используют смесь п-фенилендиаминов: N-(1,3-диметилбутил)-N'-фенил-п-фенилендиамина с N-(1,3-диметилбутил)-N'-(4-кумилфенил)-п-фенилендиамином (I) или N-(1,4-диметилпентил)-N'-фенил-п-фенилендиамином (II).

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к строительству и может быть использовано в качестве гидроизоляции подземных сооружений, фундаментов и для мягкой кровли

Изобретение относится к битумным эмульсиям, используемым в создании дорожных, кровельных и защитных покрытий

Изобретение относится к шинной и резинотехнической промышленности

Изобретение относится к процессу приготовления гидроизоляционного материала, применяемого для мягких кровель, а также гидроизоляции подвальных помещений и фундаментов

Изобретение относится к способу модификации синтетических латексов и может быть использовано в промышленности синтетического каучука, в производстве клеев, полимерцементов, пропиточных составов

Изобретение относится к способу получения фрикционных полимерных материалов и может быть использовано при изготовлении тормозных колодок железнодорожных вагонов, экскаваторов, подъемных кранов, дисков сцепления и других изделий

Изобретение относится к области гидроизоляционных изделий и касается материала рулонного гидроизоляционного наплавляемого нефтеполимерного, включающего текстильную основу и нефтеполимерное вяжущее, состоящее из высокомолекулярного нефтяного остатка и полипропилена, причем нефтеполимерное вяжущее дополнительно содержит масляную фракцию и синтетический каучук, а в качестве высокомолекулярных нефтяных остатков используются асфальт деасфальтизации гудрона пропаном, или гудрон или остаточный битум при следующих соотношениях компонентов, мас.%: высокомолекулярный нефтяной остаток 64 - 77; полипропилен 8 - 15; масляная фракция 10 - 17,5; синтетический каучук 2,5 - 7

Изобретение относится к технологии асфальтобетонов и может быть использовано в дорожном и аэродромном строительстве

Изобретение относится к дорожно-строительным материалам и может быть использовано для устройства автомобильных дорог, систематически подвергающихся знакопеременным деформациям и атмосферным воздействиям

Изобретение относится к полимерным композициям для безасбестовых фрикционных материалов, используемых в машиностроении для изготовления тормозных накладок и колодок дисковых и барабанных тормозов

Изобретение относится к структурно-окрашенным эпоксидным полимерам, которые могут найти применение в производстве цветных лакокрасочных покрытий и оптических стекол

Изобретение относится к шинной и резинотехнической промышленности

Изобретение относится к композиции для получения прокладочного материала и может быть использовано в карбюраторных двигателях, работающих в условиях повышенной температуры в топливно-масляных средах

Изобретение относится к полимерной композиции, может быть использовано для изготовления резиновых изделий, например уплотнительных колец к полевым трубопроводам

Изобретение относится к полимерным композициям на основе эпоксидных смол и предназначено для изготовления конструкционных стеклопластиков методом мокрой намотки

Изобретение относится к области изготовления композиций, которые могут быть использованы для изготовления стеклопластиковых труб, автомобильных баллонов для сжатого газа, емкостей для хранения жидкостей, для формирования защитных антикоррозионных покрытий и различных изделий из композиционных материалов

Изобретение относится к составам полимерных композиций на основе эпоксидных диановых смол и их отвердителей, которые могут быть использованы в качестве связующего для производства стеклопластиковых материалов, в частности оболочечных конструкций

Изобретение относится к области композиционных материалов, которые могут быть использованы для изготовления стеклопластиковых труб, емкостей и др

Изобретение относится к резиновой промышленности, может использоваться в производстве изделий бытовой техники, медицинских приборов, спортивных товаров

Изобретение относится к композиции на основе 4-нитрозодифенилатна, применяемой для модификации и стабилизации каучуков, резиновых смесей и резин

Изобретение относится к устройству для изготовления из целлюлозы пленок, волокон, мембран или других формованных изделий аминооксидным способом, а также к интегрированному оборудованию для изготовления пленок и волокон
Наверх