Способ определения охлаждающей способности действующей башенной градирни

 

Изобретение может быть использовано в системах оборотного водоснабжения тепловых электростанций и промышленных предприятий, где применяются башенные градирни. Способ определения охлаждающей способности действующей башенной градирни заключается в сравнении измеренных в натурных условиях гидроаэротермических параметров воды и воздуха с теоретическим пределом охлаждения. В качестве коэффициента эффективности градирни принимают отношение температур нормативного недоохлаждения к фактическому: эф= (t-)/(t-), где эф -коэффициент эффективности градирни, t - температура охлажденной воды, полученная по номограмме, - теоретический предел охлаждения для атмосферных охладителей, t - фактическая температура охлажденной воды, измеренная в натурных условиях. Связь коэффициента эффективности градирни с тепловой нагрузкой охладителя определяют по формуле U = qt, где U - тепловая нагрузка, q - плотность орошения охладителя, t - температурный перепад нагретой и охлажденной воды. Изобретение позволяет диагностировать градирни в широком диапазоне тепловых нагрузок. 1 ил.

Изобретение относится к области теплоэнергетики и может быть использовано в системах оборотного водоснабжения тепловых электростанций и промышленных предприятий, где применяются башенные градирни.

Для всех типов башенных градирен имеются номограммы температур охлажденной воды, уровень охлаждения которых лежит в основе технико-экономических расчетов, соответствующей оптимизации системы техводоснабжения ТЭС, оптимизации системы турбина-конденсатор-градирня, результатом чего является выбор основных геометрических размеров вытяжной башни, воздуховходных окон и т.п.

Известен способ определения охлаждающей способности градирен путем сравнения фактических температур воды, выходящей из градирни, с температурой смоченного термометра или теоретическим пределом охлаждения циркуляционной воды в атмосферных охладителях (см. Л.Д. Берман "Испарительное охлаждение циркуляционной воды". М.-Л.: Госэнергоиздат, 1957, с.320).

Недостатком этого способа является то, что вода, поступающая в градирню, изменяет свою температуру на (t) и температура воздуха по мере его прохождения подоросительного пространства не остается постоянной. Отсюда изменяется и в некоторых, хотя и небольших, но трудноопределяемых пределах. Это обстоятельство не позволяет говорить о строгом соответствии температур охлажденной воды в градирнях, полученных на реальных охладителях, теоретическому пределу охлаждения , отнесенному, как следует из практики, к состоянию воздуха на входе в охладитель. Вместе с тем при сравнительных оценках работы атмосферных охладителей использование теоретического предела охлаждения вполне оправдано.

Наиболее близким к предлагаемому является способ определения охлаждающей способности башенной градирни, включающий сравнение фактических параметров воды и воздуха, полученных при натурных исследованиях с нормативной номограммой температур охлажденной воды (t-t), где t - температура охлажденной воды, измеренная в натурных условиях, t - температура охлажденной воды, полученная по номограмме (см. Пособие по проектированию градирен, СНиП 2.04.02-84, М.: ЦИТП Госстроя СССР, 1989, с.106-114).

Недостатками прототипа являются использование эмпирических зависимостей, полученных на лабораторных установках, которые не всегда в полной мере соответствуют натурным условиям работы охладителя. А также этот способ не позволяет характеризовать работу охладителя в широком диапазоне изменений гидроаэротермических параметров.

Техническим результатом изобретения является диагностирование градирен в широком диапазоне тепловых нагрузок.

Технический результат достигается тем, что в способе определения охлаждающей способности действующей башенной градирни сравнивают измеренные в натурных условиях гидроаэротермические параметры воды и воздуха с теоретическим пределом охлаждения. В качестве коэффициента эффективности градирни принимают отношение температур нормативного недоохлаждения к фактическому: эф = (t-)/(t-), где эф - коэффициент эффективности градирни, t - температура охлажденной воды, полученная по номограмме, - теоретический предел охлаждения для атмосферных охладителей, t - фактическая температура охлажденной воды, измеренная в натурных условиях. Связь коэффициента эффективности градирни с тепловой нагрузкой определяют по формуле: U = qt, где U - тепловая нагрузка, q - плотность орошения охладителя, t - температурный перепад нагретой и охлажденной воды.

Способ осуществляется следующим образом. В натурных условиях на действующих башенных градирнях измеряют температуры нагретой и охлажденной воды, расход циркуляционной воды, температуру и влажность воздуха, скорость ветра. По этим данным, согласно номограмме температур охлажденной воды, определяют температуру охлажденной воды, которую сравнивают с фактически измеренной температурой, согласно зависимости. Уровень охлаждения воды в градирнях зависит от удельной тепловой нагрузки, величина которой определяется работой конденсатора турбины. Поэтому должна быть четкая функциональная зависимость между величинами t, t, , t, q, причем t зависит только от количества тепла, передаваемого воде в конденсаторе, т.е. имеется зависимость вида: (t-)/(t-) = f(tq). Левая часть этой зависимости показывает отношение температуры нормативного недоохлаждения (по номограмме температур охлажденной воды для каждого типа градирен) к фактическому, определяемому по данным натурных условий. Правая часть - тепловая нагрузка охладителя, зависящая от количества тепла, передаваемого конденсатором циркуляционной воде.

Сравнение данных натурных измерений с тепловой нагрузкой позволяет оценить охлаждающую способность градирни во всем диапазоне гидравлических и тепловых нагрузок этого охладителя.

Пример. Определение охлаждающей способности башенной брызгальной градирни Петрозаводской ТЭЦ.

На чертеже изображен график оценки охлаждающей способности башенной брызгальной градирни, поясняющий способ.

Из графика зависимости (t-)/(t-) = f(U) следует, что при низких значениях тепловой нагрузки башенная брызгальная градирня охлаждает циркуляционную воду хуже пленочной градирни и при минимальных нагрузках это ухудшение охлаждающей способности доходит до 30% (при U=20 Мкал/(м2ч)).

При высоких нагрузках порядка 100 Мкал/(м2ч) башенная брызгальная градирня работает практически идентично градирням пленочного типа. Низкие тепловые нагрузки чаще всего связаны с уменьшением циркуляционного расхода воды.

Предложенный способ определения охлаждающей способности действующих башенных градирен, в соответствии с графиком, позволяет эксплуатационному персоналу электростанций наглядно представлять режимы удовлетворительной работы охладителя и диапазоны тепловых нагрузок с заниженными уровнями охлаждения циркуляционной воды.

Формула изобретения

Способ определения охлаждающей способности действующей башенной градирни, включающий сравнение измеренных в натурных условиях гидроаэротермических параметров воды и воздуха с теоретическим пределом охлаждения, отличающийся тем, что в качестве коэффициента эффективности градирни принимают отношение температур нормативного недоохлаждения к фактическому: эф= (t-)/(t-), где эф - коэффициент эффективности градирни; t - температура охлажденной воды, полученная по номограмме;
- теоретический предел охлаждения для атмосферных охладителей;
t - фактическая температура охлажденной воды, измеренная в натурных условиях,
а связь коэффициента эффективности градирни с тепловой нагрузкой охладителя определяют по формуле
U = qt,
где U - тепловая нагрузка;
q - плотность орошения охладителя;
t - температурный перепад нагретой и охлажденной воды.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к теплоэнергетике и может быть использовано в градирнях для улавливания капельной влаги

Изобретение относится к градирням для охлаждения оборотной воды электростанций и промышленных предприятий

Изобретение относится к теплоэнергетике, металлургии, нефтепереработке, нефтехимии и другим отраслям промышленности, применяющим на своих предприятиях оборотное водоснабжение, и предназначено для оптимизации процесса улавливания влаги в противоточных башенных и вентиляторных градирнях при незначительном аэродинамическом сопротивлении проходу воздуха

Изобретение относится к теплоэнергетике и может быть использовано на предприятиях любого профиля, где требуется охлаждение оборотной воды

Изобретение относится к теплоэнергетике, в частности к системам оборотного водоснабжения промышленных предприятий

Изобретение относится к водоохладителям циркуляционных систем тепловых и атомных электростанций

Градирня // 2168132

Изобретение относится к оборудованию энергетических установок и касается средств, обеспечивающих охлаждение воды, используемой в качестве рабочего тела установки

Изобретение относится к испарительным охладителям

Изобретение относится к области водоснабжения, в частности к очистке подземных вод, содержащих устойчивые формы железа - железоорганические комплексные соединения и агрессивные газы, и может применяться в системах подготовки воды для питьевых целей

Изобретение относится к аппаратам для тепломассообмена между жидкими и газообразными средами, в частности в оросителях и водоуловителях градирен

Изобретение относится к контактным охладителям, в частности к вентиляторным градирням, и может быть использовано на брызгальных градирнях башенного типа

Изобретение относится к устройствам для охлаждения воды, в частности к эжекционным градирням

Изобретение относится к градирням систем оборотного водоснабжения электростанций и промышленных предприятий

Изобретение относится к области теплоэнергетики

Изобретение относится к системам оборотного водоснабжения промышленных предприятий

Изобретение относится к теплоэнергетике, может быть использовано для охлаждения оборотной воды

Градирня // 2204099
Изобретение относится к теплоэнергетике, в частности к градирням, и может быть использовано для охлаждения оборотной воды

Градирня // 2204100
Изобретение относится к теплоэнергетике, в частности к испарительным охладителям, и может быть применено на тепловых и атомных электростанциях, а также на других промышленных объектах, где требуется охлаждение воды или других жидкостей
Наверх